<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

PSA制氧過程產品氣流量對其氧氣體積分數的影響

劉應書 張全立 劉文海 李子宜 楊雄 曹曦光 付耀國 李燁

劉應書, 張全立, 劉文海, 李子宜, 楊雄, 曹曦光, 付耀國, 李燁. PSA制氧過程產品氣流量對其氧氣體積分數的影響[J]. 工程科學學報, 2020, 42(11): 1507-1515. doi: 10.13374/j.issn2095-9389.2019.11.11.002
引用本文: 劉應書, 張全立, 劉文海, 李子宜, 楊雄, 曹曦光, 付耀國, 李燁. PSA制氧過程產品氣流量對其氧氣體積分數的影響[J]. 工程科學學報, 2020, 42(11): 1507-1515. doi: 10.13374/j.issn2095-9389.2019.11.11.002
LIU Ying-shu, ZHANG Quan-li, LIU Wen-hai, LI Zi-yi, YANG Xiong, CAO Xi-guang, FU Yao-guo, LI Ye. Influence of product flow rate on O2 volume fraction in PSA oxygen generation process[J]. Chinese Journal of Engineering, 2020, 42(11): 1507-1515. doi: 10.13374/j.issn2095-9389.2019.11.11.002
Citation: LIU Ying-shu, ZHANG Quan-li, LIU Wen-hai, LI Zi-yi, YANG Xiong, CAO Xi-guang, FU Yao-guo, LI Ye. Influence of product flow rate on O2 volume fraction in PSA oxygen generation process[J]. Chinese Journal of Engineering, 2020, 42(11): 1507-1515. doi: 10.13374/j.issn2095-9389.2019.11.11.002

PSA制氧過程產品氣流量對其氧氣體積分數的影響

doi: 10.13374/j.issn2095-9389.2019.11.11.002
基金項目: 國家重點研發計劃資助項目(2017YFC0806304)
詳細信息
    通訊作者:

    E-mail:ziyili@ustb.edu.cn

  • 中圖分類號: O647.3

Influence of product flow rate on O2 volume fraction in PSA oxygen generation process

More Information
  • 摘要: 為了提高小型兩床變壓吸附(PSA)制氧機在變產品氣流量下的氧氣體積分數,建立了改進的Skarstrom兩床循環PSA制氧實驗裝置,研究了產品氣流量對其氧氣體積分數的影響。研究結果表明,在低產品氣流量運行條件下,通過提高清洗氣總氧量與原料氣總氧量之比(P/F)以及降低最高吸附壓力與最低解吸壓力之比(θ)可消除氧氣返混的不利影響;在高產品氣流量運行條件下,通過提高P/Fθ可以提高實驗裝置中分子篩的工作能力,進而提高產品氣中的氧氣體積分數。在此基礎上,對低和高產品氣流量運行條件下的P/Fθ進行了調節,分別將產品氣流量為3.55 L·min?1和19.88 L·min?1時的氧氣體積分數從92.4%增加至了95.7%和從74.0%增加至了74.9%。本文的研究結果可為變產品氣流量下PSA制氧工藝參數優化提供參考。

     

  • 圖  1  實驗裝置原理圖

    Figure  1.  Schematic of pressure swing adsorption (PSA) experimental setup

    1—Filter; 2—Air compressor; 3—Heat exchanger; 4—Buffer tank; 5—Needle valves (K1−K4); 6—Relief valve; 7—Mass flowmeters (F1, F2, F3); 8—Solenoid valves (E1−E8); 9—Adsorption beds (B1, B2); 10—Pressure transducers (P1, P2); 11—O2 concentration detection ports (C1, C2, C3); 12—Check valve; 13—O2 storage tank; 14—Pressure maintaining valve; 15—PLC;16—Computer

    圖  2  改進的Skarstrom兩床循環PSA工藝流程圖

    Figure  2.  Schematic of the modified Skarstrom pressure swing adsorption cycle

    圖  3  實驗A和B中的氧氣體積分數和回收率隨產品氣流量的變化

    Figure  3.  Variations of O2 volume fraction and recovery rate with product flow rate in experiments A and B

    圖  4  實驗A與B在產品氣流量為3.55 L·min?1時床層頂部氧氣體積分數和床層壓力隨循環時間的周期性變化

    Figure  4.  Cyclic variations of O2 volume fraction and pressure at the top of the bed in experiments A and B at a product flow rate of 3.55 L·min?1

    圖  5  產品氣流量分別為3.55 L·min?1和10.37 L·min?1時,實驗B床層頂部氧氣體積分數和床層壓力隨循環時間的周期性變化

    Figure  5.  Variations of O2 volume fraction and pressure at the top of the bed at product flow rates of 3.55 L·min?1 and 10.37 L·min?1, respectively, in experiment B

    圖  6  產品氣流量分別為13.57 L·min?1和19.88 L·min?1時,實驗B床層頂部氧氣體積分數和床層壓力隨循環時間的周期性變化

    Figure  6.  Variations of O2 volume fraction and pressure at the top of the bed at product flow rates of 13.57 L·min?1 and 19.88 L·min?1, respectively, in experiment B

    圖  7  產品氣流量為3.55 L·min?1時實驗B和C床層頂部氧氣體積分數和壓力的變化

    Figure  7.  Variations of O2 volume fraction and pressure at the top of the bed in experiments B and C at a product flow rate of 3.55 L·min?1

    圖  8  產品氣流量為19.88 L·min?1時實驗B和C床層頂部氧氣體積分數和壓力的變化

    Figure  8.  Variations of O2 volume fraction and pressure at the top of the bed in experiments B and C at a product flow rate of 19.88 L·min?1

    圖  9  實驗B和實驗C在變產品氣流量下氧氣體積分數和回收率的比較

    Figure  9.  Comparison of O2 volume fraction and recovery at different product flow rates in experiments B and C

    表  1  床層及有關管道尺寸

    Table  1.   Adsorption bed and related pipe sizes

    ItemsSize/mm
    Diameter of adsorption bed112.00
    Column length of adsorption bed620.00
    Diameters of main pipe19.05
    Diameters of pressure equalization and purge pipe12.70
    下載: 導出CSV

    表  2  吸附劑參數

    Table  2.   Adsorbent quantities and properties

    ItemsSize
    Mass of oxygen molecular sieve2.70±0.01 kg(one bed)
    Mass of activated alumina0.76±0.01 kg(one bed)
    Average diameter of oxygen molecular sieve~0.50 mm
    Average diameter of activated alumina~4.00 mm
    Bulk density of oxygen molecular sieve670.00 kg·m?3
    Bulk density of activated alumina700.00 kg·m?3
    下載: 導出CSV

    表  3  PSA工藝步驟

    Table  3.   PSA cycle design at each step

    ItemsDuration/sB1B2ItemsDuration/sB1B2
    Step 10.5PPE&FPDPEStep 50.5DPEPPE&FP
    Step 25FPBDStep 65BDFP
    Step 37ADDPStep 77DPAD
    Step 45AD&PGPGStep 85PGAD&PG
    下載: 導出CSV

    表  4  P/Fθ隨產品氣流量增加的變化范圍

    Table  4.   Ranges of variations of P/F and θ with product flow rate

    ExperimentP/Fθ
    A1.33–0.743.29–3.10
    B0.65–0.493.55–3.33
    下載: 導出CSV

    表  5  實驗B和C工藝參數的對比

    Table  5.   Comparison of process parameters in experiments B and C

    Product flow rates conditionsProduct flow rate/ (L·min?1)P/Fθ
    Experiment BExperiment CExperiment BExperiment C
    Lower product flow rates3.550.651.343.553.24
    7.180.661.143.523.26
    10.370.650.683.473.42
    Higher product flow rates13.570.640.653.443.42
    16.730.570.583.403.39
    19.880.490.513.333.36
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Yang X, Epiepang F E, Li J B, et al. Sr-LSX zeolite for air separation. Chem Eng J, 2019, 362: 482 doi: 10.1016/j.cej.2019.01.066
    [2] Ran Z, Luo Y J. Research progress on oxygen production and supply technology and rational use of oxygen in plateau. Peoples Military Surgeon, 2019, 62(5): 466

    冉莊, 羅勇軍. 高原制氧供氧技術及合理用氧研究進展. 人民軍醫, 2019, 62(5):466
    [3] Liu Y S, Zhu X Q, Cao Y Z, et al. Flow characteristics and oxygen-enriched effect of oxygen diffusion. Chin J Eng, 2015, 37(10): 1370

    劉應書, 祝顯強, 曹永正, 等. 彌散供氧流動特性及其富氧效果. 工程科學學報, 2015, 37(10):1370
    [4] Yang X, Wang H Y, Chen J W, et al. Two-dimensional modeling of pressure swing adsorption (PSA) oxygen generation with radial-flow adsorber. Appl Sci, 2019, 9(6): 1153 doi: 10.3390/app9061153
    [5] Wang Y Y, An Y X, Ding Z Y, et al. Integrated VPSA processes for air separation based on dual reflux configuration. Ind Eng Chem Res, 2019, 58: 6562
    [6] Wang H Y, Liu Y S, Shi S S, et al. Influence of the structure of radial flow adsorbers on oxygen production with pressure swing adsorption. Chin J Eng, 2015, 37(2): 238

    王浩宇, 劉應書, 施紹松, 等. 徑向流吸附器內部結構對變壓吸附制氧效果的影響. 工程科學學報, 2015, 37(2):238
    [7] Mendes A M M, Costa C A V, Rodrigues A E. Oxygen separation from air by PSA: modelling and experimental results Part I: isothermal operation. Sep Purif Technol, 2001, 24(1-2): 173 doi: 10.1016/S1383-5866(00)00227-6
    [8] Lü A H, Deng C, Zhu M F, et al. Study on the process of small-scale PSA oxygen generation. Appl Chem Ind, 2018, 47(3): 481 doi: 10.3969/j.issn.1671-3206.2018.03.015

    呂愛會, 鄧橙, 朱孟府, 等. 小型變壓吸附制氧工藝技術研究. 應用化工, 2018, 47(3):481 doi: 10.3969/j.issn.1671-3206.2018.03.015
    [9] Farooq S, Ruthven D M, Boniface H A. Numerical simulation of a pressure swing adsorption oxygen unit. Chem Eng Sci, 1989, 44(12): 2809 doi: 10.1016/0009-2509(89)85090-0
    [10] Zhai H, Liu Y S, Zhang H, et al. Experimental study on vacuum-desorption of small-scale oxygen concentrator by pressure swing adsorption. Chem Ind Eng Prog, 2008, 27(7): 1061 doi: 10.3321/j.issn:1000-6613.2008.07.020

    翟暉, 劉應書, 張輝, 等. 小型變壓吸附制氧的真空解吸實驗. 化工進展, 2008, 27(7):1061 doi: 10.3321/j.issn:1000-6613.2008.07.020
    [11] Bhat A A, Mang H, Rajkumar S, et al. On-board oxygen generation using high performance molecular sieve. Life Sci J, 2017, 2(4): 380
    [12] Zhang X B, Liu Y S, Liu W H, et al. Experiment study on a multicolumn PSA oxygen system. Cryogenics, 2009(2): 43 doi: 10.3969/j.issn.1000-6516.2009.02.010

    章新波, 劉應書, 劉文海, 等. 多塔變壓吸附制氧技術實驗. 低溫工程, 2009(2):43 doi: 10.3969/j.issn.1000-6516.2009.02.010
    [13] Liow J L, Kenney C N. The backfill cycle of the pressure swing adsorption process. AIChE J, 1990, 36(1): 53 doi: 10.1002/aic.690360108
    [14] Mofarahi M, Towfighi J, Fathi L. Oxygen separation from air by four-bed pressure swing adsorption. Ind Eng Chem Res, 2009, 48(11): 5439 doi: 10.1021/ie801805k
    [15] Lü A H, Deng C, Zhu M F, et al. Analyzing the PSA process of oxygen generation in plateau environment using response surface method. Appl Chem Ind, 2018, 47(6): 1175 doi: 10.3969/j.issn.1671-3206.2018.06.024

    呂愛會, 鄧橙, 朱孟府, 等. 響應面法分析高原環境變壓吸附制氧工藝的研究. 應用化工, 2018, 47(6):1175 doi: 10.3969/j.issn.1671-3206.2018.06.024
    [16] Tian C X, Fu Q, Ding Z Y, et al. Experiment and simulation study of a dual-reflux pressure swing adsorption process for separating N2/O2. Sep Purif Technol, 2017, 189: 54 doi: 10.1016/j.seppur.2017.06.041
    [17] Rege S U, Yang R T. Limits for air separation by adsorption with LiX zeolite. Ind Eng Chem Res, 1997, 36(12): 5358 doi: 10.1021/ie9705214
    [18] Reynolds S P, Ebner A D, Ritter J A. Enriching PSA cycle for the production of nitrogen from air. Ind Eng Chem Res, 2006, 45(9): 3256 doi: 10.1021/ie0513550
    [19] Tian T, Liu B, Shi M S, et al. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds. CIESC J, 2019, 70(3): 969

    田濤, 劉冰, 石梅生, 等. 雙塔微型變壓吸附制氧機實驗和模擬. 化工學報, 2019, 70(3):969
    [20] Serbezov A. Effect of the process parameters on the length of the mass transfer zone during product withdrawal in pressure swing adsorption cycles. Chem Eng Sci, 2001, 56(15): 4673 doi: 10.1016/S0009-2509(01)00121-X
    [21] Tondeur D, Chlendi M. Front analysis and cycle policy in PSA operations. Gas Sep Purif, 1993, 7(2): 105 doi: 10.1016/0950-4214(93)85007-I
    [22] Mohammadi N, Hossain M I, Ebner A D, et al. New pressure swing adsorption cycle schedules for producing high-purity oxygen using carbon molecular sieve. Ind Eng Chem Res, 2016, 55(40): 10758 doi: 10.1021/acs.iecr.6b02570
    [23] Wang H Y, Liu Y S, Zhang C Z, et al. Study on variable mass flow laws in π-shaped centripetal radial flow adsorber. CIESC J, 2019, 70(9): 3385

    王浩宇, 劉應書, 張傳釗, 等. π型向心徑向流吸附器變質量流動特性研究. 化工學報, 2019, 70(9):3385
  • 加載中
圖(9) / 表(5)
計量
  • 文章訪問數:  2480
  • HTML全文瀏覽量:  998
  • PDF下載量:  82
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-11-11
  • 刊出日期:  2020-11-25

目錄

    /

    返回文章
    返回