<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

PH13-8Mo不銹鋼在半鄉村大氣環境中長周期腐蝕行為

趙起越 趙晉斌 劉彥寧 黃運華 程學群 李曉剛

趙起越, 趙晉斌, 劉彥寧, 黃運華, 程學群, 李曉剛. PH13-8Mo不銹鋼在半鄉村大氣環境中長周期腐蝕行為[J]. 工程科學學報, 2021, 43(3): 400-408. doi: 10.13374/j.issn2095-9389.2019.11.08.001
引用本文: 趙起越, 趙晉斌, 劉彥寧, 黃運華, 程學群, 李曉剛. PH13-8Mo不銹鋼在半鄉村大氣環境中長周期腐蝕行為[J]. 工程科學學報, 2021, 43(3): 400-408. doi: 10.13374/j.issn2095-9389.2019.11.08.001
ZHAO Qi-yue, ZHAO Jin-bin, LIU Yan-ning, HUANG Yun-hua, CHENG Xue-qun, LI Xiao-gang. Corrosion behavior of PH13-8Mo stainless steel after long-term exposure to semi-rural atmosphere[J]. Chinese Journal of Engineering, 2021, 43(3): 400-408. doi: 10.13374/j.issn2095-9389.2019.11.08.001
Citation: ZHAO Qi-yue, ZHAO Jin-bin, LIU Yan-ning, HUANG Yun-hua, CHENG Xue-qun, LI Xiao-gang. Corrosion behavior of PH13-8Mo stainless steel after long-term exposure to semi-rural atmosphere[J]. Chinese Journal of Engineering, 2021, 43(3): 400-408. doi: 10.13374/j.issn2095-9389.2019.11.08.001

PH13-8Mo不銹鋼在半鄉村大氣環境中長周期腐蝕行為

doi: 10.13374/j.issn2095-9389.2019.11.08.001
基金項目: 國家重點研發資助項目(2016YFB0300604);國家自然科學基金資助項目(51971033)
詳細信息
    通訊作者:

    E-mail: huangyh@mater.ustb.edu.cn

  • 中圖分類號: TG142.71

Corrosion behavior of PH13-8Mo stainless steel after long-term exposure to semi-rural atmosphere

More Information
  • 摘要: 在北京半鄉村大氣環境中對未經預鈍化及硝酸預鈍化后的PH13-8Mo不銹鋼進行5 a的長周期暴曬試驗,通過表面形貌觀察、質量損失分析、表面鈍化膜及腐蝕產物膜層分析、力學性能檢測及斷口分析等方法,研究了硝酸預鈍化處理對PH13-8Mo長周期腐蝕行為的影響規律及機理。結果表明,經5 a大氣暴曬試驗,硝酸預鈍化處理減輕了PH13-8Mo不銹鋼的點蝕、降低其均勻腐蝕速率,通過降低PH13-8Mo不銹鋼鈍化膜中的氫氧化物含量、提高Cr/Fe原子比并提高大氣暴曬后表面的Kelvin電位,延遲了Cl?對鈍化膜的破壞及點蝕的形核,進而提高了表面膜層對基體的保護作用。硝酸預鈍化處理能減少在半鄉村大氣環境中PH13-8Mo不銹鋼力學性能的下降,但對試樣的斷裂方式幾乎沒有產生影響,二者均為韌性斷裂,斷口均呈現典型的“杯錐狀”。

     

  • 圖  1  PH13-8Mo鋼微觀組織及析出相形貌成分

    Figure  1.  TEM images of the morphologies and chemical composition of the precipitates

    圖  2  預鈍化前后PH13-8Mo的X射線衍射譜

    Figure  2.  XRD pattern of the PH13-8Mo stainless steel before and after pre-passivation treatment

    圖  3  北京大氣暴曬5 a后PH13-8Mo試樣形貌。(a)未經鈍化試樣宏觀形貌;(b)預鈍化后試樣宏觀形貌;(c)未經鈍化試樣除銹前微觀形貌;(d)預鈍化后試樣除銹前微觀形貌;(e)未經鈍化試樣除銹后微觀形貌;(f)預鈍化后試樣除前后微觀形貌

    Figure  3.  Morphologies of the samples after five-year exposure in Beijing: (a) macro morphologies of bare samples; (b) macro morphologies of pre-passivated samples; (c) micro morphologies of bare samples before rust removal; (d) micro morphologies of pre-passivated samples before rust removal; (e) micro morphologies of bare pre-passivated samples after rust removal; (f) micro morphologies of pre-passivated samples after rust removal

    圖  4  北京大氣暴曬5 a后PH13-8Mo不銹鋼表面的X射線光電子能譜圖。(a)全譜;(b)Cr 2p3/2;(c)Fe 2p3/2;(d)O 1s;(e)表面膜層中原子數分數

    Figure  4.  XPS spectra of the surface of PH13-8Mo stainless steel after five-year exposure in Beijing: (a) survey spectrum; (b) Cr 2p3/2; (c) Fe 2p3/2; (d) O 1s; (e) atomic fraction in the surface

    圖  5  北京大氣暴曬5 a后PH13-8Mo不銹鋼表面的俄歇電子能譜深度分析深度分析。(a)未經預鈍化試樣;(b)預鈍化試樣。

    Figure  5.  AES depth profiles of the surface of PH13-8Mo stainless steel after five-year exposure in Beijing: (a) bare sample; (b) pre-passivated sample

    圖  6  北京大氣暴曬5 a后PH13-8Mo不銹鋼表面微區Kelvin電位分布。(a)未經鈍化試樣;(b)預鈍化試樣

    Figure  6.  Kelvin potential on the surface of PH13-8Mo stainless steel after five-year exposure in Beijing: (a) bare sample; (b) pre-passivated sample

    圖  7  北京大氣暴曬5 a后PH13-8Mo不銹鋼拉伸試樣形貌。未經鈍化試樣(a)和預鈍化試樣(b)宏觀形貌;未經鈍化試樣(c)和預鈍化試樣(d)斷口微觀形貌

    Figure  7.  Morphologies of the tensile specimens of PH13-8Mo stainless steels after five-year exposure in Beijing: macro morphologies of bare sample (a) and pre-passivated sample (b); fracture morphologies of bare sample (c) and pre-passivated sample (d)

    表  1  PH13-8Mo不銹鋼的化學成分(質量分數)

    Table  1.   Composition of experimental steel %

    CSiMnPSCrNiAlMoFe
    0.0550.0650.0460.0230.0212.428.141.142.40Balance
    下載: 導出CSV

    表  2  試驗期間北京試驗站環境數據

    Table  2.   Experimental conditions of the Beijing experiment station

    Experiment stationsClimateWeather factors(annual average)Corrosion concentration/(μg·cm?2·d?1
    Beijing 39.98°N, 116.26°E Altitude:73 mWarm temperate and semi-humid,semi-rural atmosphericTemperature:13.8 ℃ Rainfall: 388.8 mm Relative humidity: 44.6%H2S:0.575 Sea-salt particles:0.313 Sulfation rate:2.869
    下載: 導出CSV

    表  3  PH13-8Mo試樣力學性能數據

    Table  3.   Mechanical properties of PH13-8Mo stainless steels

    Samplesσ0.2 /MPaσb /MPaδ /%
    Bare sample1308134315.3
    Pre-passivation sample1331136515.6
    Original sample1339138016.1
    下載: 導出CSV

    表  4  PH13-8Mo不銹鋼暴曬后膜層主要化學成分的結合能

    Table  4.   Binding energies of the primary compounds of the PH13-8Mo stainless steel

    ElementPeakSpecies: binding energy
    Cr2p3/2Cr(met): 574.7 eV; Cr2O3:576.8 eV; Cr(OH)3:
    577.4 eV; CrO3:578.9 eV
    Fe2p3/2Fe(met): 706.74 eV; FeOOH:711.8 eV; Fe3O4:
    708.1 eV; Fe2O3:710.4 eV; FeO:709.6 eV
    O1sO2?: 530.2 eV; OH?:531.5 eV; H2O: 532.8 eV
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Zhang L, Yong Q L, Liang J X, et al. Precipitated phases and effects of they on mechanical properties of PH13-8Mo high strength stainless steel after aging at different temperature. Mater Mech Eng, 2017, 41(3): 19 doi: 10.11973/jxgccl201703004

    張良, 雍岐龍, 梁劍雄, 等. PH13-8Mo高強不銹鋼在不同溫度時效后的析出相及其對力學性能的影響. 機械工程材料, 2017, 41(3):19 doi: 10.11973/jxgccl201703004
    [2] Guo Z, Sha W, Vaumousse D. Microstructural evolution in a PH13-8 stainless steel after ageing. Acta Mater, 2003, 51(1): 101
    [3] Li X Y, Fan C H, Wu Q L, et al. Effect of solution pH, Cl? concentration and temperature on electrochemical behavior of PH13-8Mo steel in acidic environments. J Iron Steel Res Int, 2017, 24(12): 1238
    [4] Munn P, Andersson B. Hydrogen embrittlement of PH13-8Mo steel in simulated real-life tests and slow strain rate tests. Corrosion, 1990, 46(4): 286
    [5] Yue C X, Zhang L W, Liao S L, et al. Research on the dynamic recrystallization behavior of GCr15 steel. Mater Sci Eng A, 2009, 499(1-2): 177
    [6] Cao C, Cheung M M S. Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures. Constr Build Mater, 2014, 51: 75
    [7] Carmezim M J, Sim?es A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel. Corros Sci, 2005, 47(3): 581
    [8] Luo H, Li X G, Xiao K, et al. Corrosion behavior of 304 stainless steel in the marine atmospheric environment of Xisha islands. J Univ Sci Technol Beijing, 2013, 35(3): 332

    駱鴻, 李曉剛, 肖葵, 等. 304不銹鋼在西沙海洋大氣環境中的腐蝕行為. 北京科技大學學報, 2013, 35(3):332
    [9] Dong C F, Luo H, Xiao K, et al. Evaluation of corrosion behavior of 316L stainless steel exposed in marine atmosphere of Xisha islands. J Sichuan Univ Eng Sci Ed, 2012, 44(3): 179

    董超芳, 駱鴻, 肖葵, 等. 316L不銹鋼在西沙海洋大氣環境下的腐蝕行為評估. 四川大學學報(工程科學版), 2012, 44(3):179
    [10] Wallinder D, Wallinder I O, Leygraf C. Influence of surface treatment of type 304L stainless steel on atmospheric corrosion resistance in urban and marine environments. Corrosion, 2003, 59(3): 220
    [11] Button H E, Simm D W. The influence of particulate matter on the corrosion behaviour of type 316 stainless steel. Anti-Corros Methods Mater, 1985, 32(6): 8
    [12] Cui Z Y, Chen S S, Wang L W, et al. Passivation behavior and surface chemistry of 2507 super duplex stainless steel in acidified artificial seawater containing thiosulfate. J Electrochem Soc, 2017, 164(13): C856
    [13] Goutier F, Stéphane V, Laborde E, et al. 304L stainless steel oxidation in carbon dioxide: An XPS study. J Alloys Compd, 2011, 509(7): 3246
    [14] Wang H R, Shi R H, Qu J E, et al. Research on phytic acid passivation technology of stainless steel and corrosion resistance. J Mater Eng, 2012(11): 77

    王海人, 石日華, 屈鈞娥, 等. 不銹鋼植酸鈍化工藝及其耐腐蝕性能研究. 材料工程, 2012(11):77
    [15] Song P C, Liu W B, Liu L, et al. Austenite growth behavior of Fe?13Cr?5Ni martensitic stainless steel under continuous heating. Chin J Eng, 2017, 39(1): 68

    宋鵬程, 柳文波, 劉璐, 等. Fe?13Cr?5Ni馬氏體不銹鋼在連續加熱過程中兩相區的奧氏體生長行為. 工程科學學報, 2017, 39(1):68
    [16] Wang L, Dong C F, Man C, et al. Enhancing the corrosion resistance of selective laser melted 15-5PH martensite stainless steel via heat treatment. Corros Sci, 2020, 166: 108427
    [17] Shu W, Li J, Lian X J, et al. Effect of heat treatment on the high temperature ductility of 00Cr24Ni13 austenitic stainless steel casting billets. Chin J Eng, 2015, 37(2): 190

    舒瑋, 李俊, 廉曉潔, 等. 熱處理對奧氏體不銹鋼00Cr24Ni13鑄坯高溫熱塑性的影響. 工程科學學報, 2015, 37(2):190
    [18] Vignal V, Ringeval S, Thiébaut S, et al. Influence of the microstructure on the corrosion behaviour of low-carbon martensitic stainless steel after tempering treatment. Corros Sci, 2014, 85: 42
    [19] Cheng X Q, Li X G, Dong C F. Study on the passive film formed on 2205 stainless steel in acetic acid by AAS and XPS. Int J Miner Metall Mater, 2009, 16(2): 170
    [20] Clayton C R, Lu Y C. A bipolar model of the passivity of stainless steel: the role of Mo addition. J Electrochem Soc, 1986, 133(12): 2465
    [21] Chen X, Li X G, Du C W, et al. Effect of cathodic protection on corrosion of pipeline steel under disbonded coating. Corros Sci, 2009, 51(9): 2242
    [22] Hu Y B, Dong C F, Sun M, et al. Effects of solution pH and Cl? on electrochemical behaviour of an Aermet100 ultra-high strength steel in acidic environments. Corros Sci, 2011, 53(12): 4159
    [23] Luo H, Wang X Z, Dong C F, et al. Effect of cold deformation on the corrosion behaviour of UNS S31803 duplex stainless steel in simulated concrete pore solution. Corros Sci, 2017, 124: 178
    [24] Mischler S, Vogel A, Mathieu H J, et al. The chemical composition of the passive film on Fe?24Cr and Fe?24Cr?11Mo studied by AES. Corros Sci, 1991, 32(9): 925
    [25] Yu Y, Lu L, Li X G. Application of micro-electrochemical technologies in atmospheric corrosion of thin electrolyte layer. Chin J Eng, 2018, 40(6): 649

    于陽, 盧琳, 李曉剛. 微區電化學技術在薄液膜大氣腐蝕中的應用. 工程科學學報, 2018, 40(6):649
    [26] Wang J R, Bai Z H, Xiao K, et al. Influence of atmospheric particulates on initial corrosion behavior of printed circuit board in pollution environments. Appl Surf Sci, 2019, 467-468: 889
    [27] Szklarska-Smialowska Z. Mechanism of pit nucleation by electrical breakdown of the passive film. Corros Sci, 2002, 44(5): 1143
  • 加載中
圖(7) / 表(4)
計量
  • 文章訪問數:  1279
  • HTML全文瀏覽量:  631
  • PDF下載量:  57
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-11-08
  • 刊出日期:  2021-03-26

目錄

    /

    返回文章
    返回