<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

組織形態對718塑料模具鋼切削性能的影響

王宇斌 王勇 陳旋 吳曉春

王宇斌, 王勇, 陳旋, 吳曉春. 組織形態對718塑料模具鋼切削性能的影響[J]. 工程科學學報, 2020, 42(10): 1343-1351. doi: 10.13374/j.issn2095-9389.2019.11.06.001
引用本文: 王宇斌, 王勇, 陳旋, 吳曉春. 組織形態對718塑料模具鋼切削性能的影響[J]. 工程科學學報, 2020, 42(10): 1343-1351. doi: 10.13374/j.issn2095-9389.2019.11.06.001
WANG Yu-bin, WANG Yong, CHEN Xuan, WU Xiao-chun. Machinability analysis of microstructures in pre-hardening plastic mold steel 718[J]. Chinese Journal of Engineering, 2020, 42(10): 1343-1351. doi: 10.13374/j.issn2095-9389.2019.11.06.001
Citation: WANG Yu-bin, WANG Yong, CHEN Xuan, WU Xiao-chun. Machinability analysis of microstructures in pre-hardening plastic mold steel 718[J]. Chinese Journal of Engineering, 2020, 42(10): 1343-1351. doi: 10.13374/j.issn2095-9389.2019.11.06.001

組織形態對718塑料模具鋼切削性能的影響

doi: 10.13374/j.issn2095-9389.2019.11.06.001
基金項目: 國家重點研發計劃資助項目(2016YFB0300400,2016YFB0300404)
詳細信息
    通訊作者:

    E-mail: wuxiaochun@t.shu.edu.cn

  • 中圖分類號: TG547; TG161

Machinability analysis of microstructures in pre-hardening plastic mold steel 718

More Information
  • 摘要: 通過熱處理制備出具有回火馬氏體組織、下貝氏體組織以及粒狀貝氏體組織的718鋼,利用光學顯微鏡、掃描電子顯微鏡、X射線衍射儀、萬能拉伸實驗機比較其顯微組織及力學性能。同時借助高速銑削實驗及光學輪廓儀,研究力學性能以及組織結構對切削性能的影響。結果表明,當切削速度低于145 m·min?1時,貝氏體組織類型比回火馬氏體組織更易切削,切削貝氏體組織比切削回火馬氏體組織的刀具使用壽命高30%~40%。當切削速度高于165 m·min?1時,馬氏體組織發生了加工軟化現象,刀具使用壽命提高,切削性能上升。粒狀貝氏體組織加工表面因為嚴重的刀具黏附而出現背脊紋路,馬氏體組織具有最佳的切削表面粗糙度。綜合考慮之下,三種組織的綜合切削性能從高到低排序為:下貝氏體組織、馬氏體組織、粒狀貝氏體組織,采用300 ℃等溫淬火工藝可以有效提升718塑料模具鋼的綜合切削性能。

     

  • 圖  1  三種組織的熱處理工藝曲線。LB—下貝氏體;GB—粒狀貝氏體;M—回火馬氏體

    Figure  1.  Process curve of three microstructures: LB—Low bainite; GB—granular bainite; M—tempered mastensite

    圖  2  三種試樣的組織圖。(a)下貝氏體試樣;(b)下貝氏體板條;(c)粒狀貝氏體試樣;(d) M/A島;(e)馬氏體組織;(f)馬氏體板條及板條間碳化物

    Figure  2.  Three different microstructures: (a) low bainite; (b) low bainite lath; (c) granular bainite; (d) M/A island; (e) martensite; (f) martensite lath and interlath carbides

    圖  3  不同轉速時三種試樣的加工硬化率

    Figure  3.  Work hardening ratio of three specimens at different cutting speeds

    圖  4  不同轉速時三種試樣的總切削力

    Figure  4.  Cutting forces of three specimens at different cutting speeds

    圖  5  不同切削速度時三種試樣的后刀面磨損寬度曲線。(a) 125 m·min–1;(b) 145 m·min–1;(c) 165 m·min–1

    Figure  5.  Maximum flank wear of three specimens at different cutting speeds: (a) 125 m·min–1; (b) 145 m·min–1; (c) 165 m·min–1

    圖  6  下貝氏體組織在切削一定時間后的刀具磨損狀態。(a,b)前刀面磨損圖;(c)后刀面磨損圖;(d) L1線的能譜圖

    Figure  6.  Tool wear of low bainite specimens after cutting for a certain time: (a,b) wear of rake face; (c) wear of flank face; (d) EDS analysis in L1 line

    圖  7  不同試樣在轉速為165 m·min–1時的刀具后刀面磨損圖。(a)回火馬氏體;(b)粒狀貝氏體

    Figure  7.  Flank wear of different samples in cutting speed of 165 m·min–1: (a) tempered martensite; (b) grain bainite

    圖  8  三種試樣在轉速為145 m·min–1下切削20 min后的刀具后刀面EDS元素分布圖。(a)回火馬氏體;(b)粒狀貝氏體;(c)下貝氏體

    Figure  8.  EDS element mapping of cutting tool uesd for milling of three specimens for 20 min at the cutting speed of 145 m·min–1: (a) tempered martensite; (b) grain bainite; (c) low bainite

    圖  9  三種試樣切削20 min后表面宏觀形貌。(a)回火馬氏體;(b)粒狀貝氏體;(c)下貝氏體;(d)粒狀貝氏體3D形貌

    Figure  9.  Milling surface of three specimens for 20 min at the cutting speed of 145 m·min–1: (a) tempered martensite; (b) grain bainite; (c) low bainite; (d) 3D morphology of grain bainite

    表  1  718鋼的化學成分(質量分數)

    Table  1.   Chemical composition of 718 steels %

    CSiMnPSCrNiMoVFe
    0.400.281.280.0150.0031.820.990.330.09Bal.
    下載: 導出CSV

    表  2  機加工參數

    Table  2.   Cutting conditions

    Cutting speed, Vc / (m·min–1)125,145,165
    Feed per tooth, fz / (mm·z–1)0.075
    Cutting width, ae / mm1.0
    Cutting depth, ap / mm1.0
    Cooling methodAir cooling
    Note: z represents a tooth on the milling cutter.
    下載: 導出CSV

    表  3  三種試樣的力學性能及殘余奧氏體含量

    Table  3.   Mechanical properties and retained austenite of three samples

    SamplesYield strength/ MPaTensile strength/ MPaElongation /%Section shrinkage / %Hardness, HRCResidual austenite content / %
    Low bainite1145119212.652.0365.8
    Grain bainite986101014.357.6357.1
    Tempered martensite1210128013.254.1353.3
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Min Y A, Yang Y P, Zhang Z, et al. Study on machinability of pre-hardened plastic mould steel. Adv Mater Res, 2013, 690-693: 2501 doi: 10.4028/www.scientific.net/AMR.690-693.2501
    [2] Hoseiny H, Caballero F G, Hogman B, et al. The effect of the martensitic packet size on the machinability of modified AISI P20 prehardened mold steel. J Mater Sci, 2012, 47(8): 3613 doi: 10.1007/s10853-011-6208-y
    [3] Cao Y J, Sun J Q, Ma F, et al. Effect of the microstructure and residual stress on tribological behavior of induction hardened GCr15 steel. Tribol Int, 2017, 115: 108 doi: 10.1016/j.triboint.2017.05.028
    [4] Nomani J, Pramanik A, Hilditch T, et al. Chip formation mechanism and machinability of wrought duplex stainless steel alloys. Int J Adv Manuf Technol, 2015, 80: 1127 doi: 10.1007/s00170-015-7113-3
    [5] Hoseiny H, HoGman B, Andrén H, et al. The influence of microstructure and mechanical properties on the machinability of martensitic and bainitic prehardened mould steels. Int J Mater Res, 2013, 104(8): 748 doi: 10.3139/146.110926
    [6] Zhang S H. Study on 1CrMn2MoVTiB Non-Quenched and Tempered Plastic Mould Steel[Dissertation]. Shenyang: Northeastern University, 2010

    章順虎. 1CrMn2MoVTiB非調質塑料模具鋼使用性能的研究[學位論文]. 沈陽: 東北大學, 2010
    [7] Hoseiny H, H?gman B, Klement U, et al. Machinability evaluation of pre-hardened plastic mould steels. Int J Machin Machinab Mater, 2012, 11(4): 327
    [8] Huang W M, Zhao J, Niu J T, et al. Comparison in surface integrity and fatigue performance for hardened steel ball-end milled with different milling speeds. Procedia CIRP, 2018, 71: 267 doi: 10.1016/j.procir.2018.05.059
    [9] Xavior M A, Manohar M, Madhukar P M, et al. Experimental investigation of work hardening, residual stress and microstructure during machining Inconel 718. J Mech Sci Technol, 2017, 31(10): 4789 doi: 10.1007/s12206-017-0926-2
    [10] Garcia-Mateo C, Peet M, Caballero F G, et al. Tempering of hard mixture of bainitic ferrite and austenite. Mater Sci Technol, 2004, 20(7): 814 doi: 10.1179/026708304225017355
    [11] Zhang Z, Wu X C, Zhou Q, et al. Effect of microstructure on the impact toughness of a bainitic steel bloom for large plastic molds. Int J Miner Metall Mater, 2015, 22(8): 842 doi: 10.1007/s12613-015-1141-8
    [12] Fujita N, Ishikawa N, Roters F, et al. Experimental–numerical study on strain and stress partitioning in bainitic steels with martensite–austenite constituents. Int J Plast, 2018, 104: 39 doi: 10.1016/j.ijplas.2018.01.012
    [13] Zhang C, Guo H, Wang J X, et al. Effect of austempering temperature on the microstructure and wear resistance of ultrafine bainitic steel. Chin J Eng, 2018, 40(12): 1502

    張超, 郭輝, 王家星, 等. 等溫淬火溫度對超細貝氏體鋼組織及耐磨性的影響. 工程科學學報, 2018, 40(12):1502
    [14] Li S, Shi Y L, Yang X C, et al. Microstructural evolution of Mo–W–V alloyed hot-work die steel during high-temperature tempering. Chin J Eng, 2020, 42(7): 902

    李爽, 時彥林, 楊曉彩, 等. 鉬鎢釩合金化熱作模具鋼高溫回火組織演變. 工程科學學報, 2020, 42(7):902
    [15] Liu H H, Fu P X, Liu H W, et al. Microstructure evolution and mechanical properties in 718H pre-hardened mold steel during tempering. Mater Sci Eng A, 2017, 709: 181
    [16] Lu X H, Lu Y J, Wang F R, et al. Research on work hardening of micro-milling nickel-based superalloy. Modular Mach Tool Autom Manuf Tech, 2016(7): 4

    盧曉紅, 路彥君, 王福瑞, 等. 鎳基高溫合金Inconel718微銑削加工硬化研究. 組合機床與自動化加工技術, 2016(7):4
    [17] Zhang K L. Analysis and reduction measures on surface roughness of turning parts. Coal Mine Mach, 2013, 34(5): 166

    張坤領. 車削零件表面粗糙度成因分析及降低措施. 煤礦機械, 2013, 34(5):166
    [18] Liu Y M. Deformation dislocation structure and strength of structural steels. J Iron Steel Res, 2007, 19(4): 1 doi: 10.3321/j.issn:1001-0963.2007.04.001

    劉禹門. 結構鋼的形變位錯結構和強度. 鋼鐵研究學報, 2007, 19(4):1 doi: 10.3321/j.issn:1001-0963.2007.04.001
    [19] Huang Y, Cheng G G, Bao Dao H. Current status of the characteristics and control of primary carbides in H13 steel. Chin J Eng. doi: 10.13374/j.issn2095-9389.2020.05.24.002

    黃宇, 成國光, 鮑道華. H13鋼中一次碳化物的特征及控制進展. 工程科學學報. doi: 10.13374/j.issn2095-9389.2020.05.24.002
    [20] Sabzi H E, Hanzaki A Z, Abedi H R, et al. The effects of bimodal grain size distributions on the work hardening behavior of a transformation-twinning induced plasticity steel. Mater Sci Eng A, 2016, 678: 23 doi: 10.1016/j.msea.2016.09.085
    [21] Abukhshim N A, Mativenga P T, Sheikh M A. Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. Int J Mach Tools Manuf, 2006, 46(7-8): 782 doi: 10.1016/j.ijmachtools.2005.07.024
    [22] Zheng G M, Xu R F, Cheng X, et al. Effect of cutting parameters on wear behavior of coated tool and surface roughness in high-speed turning of 300M. Measurement, 2018, 125: 99 doi: 10.1016/j.measurement.2018.04.078
    [23] Suresh R, Basavarajappa S, Samuel G L. Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool. Measurement, 2012, 45(7): 1872 doi: 10.1016/j.measurement.2012.03.024
    [24] Zhan G, He L, Jiang H W, et al. Performance comparison and prediction of cutting energy of new cemented carbide micro-pit turning tool. Chin J Eng, 2017, 39(8): 1207

    占剛, 何林, 蔣宏婉, 等. 新型硬質合金微坑車刀切削能對比研究與預測. 工程科學學報, 2017, 39(8):1207
    [25] Oliaei S N B, Karpat Y. Investigating the influence of built-up edge on forces and surface roughness in micro scale orthogonal machining of titanium alloy Ti6Al4V. J Mater Process Technol, 2016, 235: 28 doi: 10.1016/j.jmatprotec.2016.04.010
  • 加載中
圖(9) / 表(3)
計量
  • 文章訪問數:  2966
  • HTML全文瀏覽量:  784
  • PDF下載量:  44
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-11-06
  • 刊出日期:  2020-10-25

目錄

    /

    返回文章
    返回