<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高滲透壓和不對稱圍壓作用下深豎井圍巖損傷破裂機理

劉力源 紀洪廣 王濤 裴峰 權道路

劉力源, 紀洪廣, 王濤, 裴峰, 權道路. 高滲透壓和不對稱圍壓作用下深豎井圍巖損傷破裂機理[J]. 工程科學學報, 2020, 42(6): 715-722. doi: 10.13374/j.issn2095-9389.2019.11.05.004
引用本文: 劉力源, 紀洪廣, 王濤, 裴峰, 權道路. 高滲透壓和不對稱圍壓作用下深豎井圍巖損傷破裂機理[J]. 工程科學學報, 2020, 42(6): 715-722. doi: 10.13374/j.issn2095-9389.2019.11.05.004
LIU Li-yuan, JI Hong-guang, WANG Tao, PEI Feng, QUAN Dao-lu. Mechanism of country rock damage and failure in deep shaft excavation under high pore pressure and asymmetric geostress[J]. Chinese Journal of Engineering, 2020, 42(6): 715-722. doi: 10.13374/j.issn2095-9389.2019.11.05.004
Citation: LIU Li-yuan, JI Hong-guang, WANG Tao, PEI Feng, QUAN Dao-lu. Mechanism of country rock damage and failure in deep shaft excavation under high pore pressure and asymmetric geostress[J]. Chinese Journal of Engineering, 2020, 42(6): 715-722. doi: 10.13374/j.issn2095-9389.2019.11.05.004

高滲透壓和不對稱圍壓作用下深豎井圍巖損傷破裂機理

doi: 10.13374/j.issn2095-9389.2019.11.05.004
基金項目: 國家重點研發計劃資助項目(2016YFC0600801);國家自然科學基金資助項目(51874014,51534002);北京市自然科學基金資助項目(2204084);中央高校基本科研業務費資助項目(FRF-TP-19-027A1)
詳細信息
    通訊作者:

    E-mail:jihongguang@ces.ustb.edu.cn

  • 中圖分類號: TD315

Mechanism of country rock damage and failure in deep shaft excavation under high pore pressure and asymmetric geostress

More Information
  • 摘要: 隨著礦產資源開采深度的不斷增大,地應力、地溫和孔隙水壓隨之顯著增大,巖石的非線性力學行為更加凸顯。針對高滲透壓和不對稱圍壓作用下深豎井圍巖損傷破裂問題,構建了流固損傷耦合效應力學分析模型,分析了流固耦合條件下深豎井開挖圍巖有效應力,探討了孔隙水壓及地應力場對圍巖損傷破裂演化的作用機制。研究結果表明:孔隙水壓及孔隙水壓梯度越大圍巖損傷破裂區面積越大,圍巖損傷破裂區面積隨圍巖滲透率的減小逐漸增大并趨于穩定;地應力場對圍巖破裂形態具有重要控制作用,最大水平主應力與最小水平主應力差異較小時,圍巖損傷破裂區集中在最小水平主應力方向,以剪切損傷為主,最大水平主應力與最小水平主應力差異較大時,在最大水平主應力方向上會產生拉伸損傷破裂區。值得關注的是,由于孔隙水壓的存在,最大有效水平主應力與最小有效水平主應力之間的比值增大,即圍巖發生拉伸破壞的風險增大。本文研究表明,豎井選址和設計過程中應避開構造應力大、孔隙水壓大的區域,從而保障井筒施工安全。

     

  • 圖  1  開挖后豎井壁面有效應力場

    Figure  1.  Effective stress field of the shaft wall after excavation

    圖  2  單軸條件下巖石損傷本構關系

    Figure  2.  Elastic-damage-based constitutive law for rock under the uniaxial stress condition

    圖  3  非均質系數為10時巖體彈性模量的空間分布。(a)巖石彈性模量空間分布;(b)巖石彈性模量概率密度

    Figure  3.  Distributions of the rock elastic modulus with the inhomogeneity index specified as 10: (a) spatial distribution of rock elastic modulus; (b) probalility density of rock elastic modulus

    圖  4  孔隙水壓力對豎井圍巖損傷破裂區面積的影響

    Figure  4.  Effect of pore pressure on the damage zone of the shaft

    圖  5  豎井圍巖滲流場(a)及主應力與損傷破裂區(b)(σH=45 MPa, σh=33.1 MPa, P0=17 MPa, Pb=13.6 MPa)

    Figure  5.  Seepage field (a), principal stress and damage zone (b) of shaft (σH=45 MPa, σh=33.1 MPa, P0=17 MPa, Pb=13.6 MPa)

    圖  6  豎井圍巖滲流場(a)及主應力與損傷破裂區(b)(σH=45 MPa, σh=33.1 MPa, P0=17 MPa, Pb=5.1 MPa)

    Figure  6.  Seepage field (a), principal stress and damage zone (b) of shaft (σH=45 MPa, σh=33.1 MPa, P0=17 MPa, Pb=5.1 MPa)

    圖  7  圍巖滲透率對損傷破裂區的作用規律

    Figure  7.  Effect of country rock permeability on the damage zone

    圖  8  圍巖損傷破裂區與地應力條件關系

    Figure  8.  Relationship between damage zone and geostress conditions

    圖  9  地應力場對圍巖損傷破裂區分布的影響。(a) σH=45 MPa, σh=45 MPa;(b) σH=45 MPa, σh=22.5 MPa

    Figure  9.  Effect of geostress conditions on the damage zone of country rock: (a) σH=45 MPa, σh=45 MPa; (b) σH=45 MPa, σh=22.5 MPa

    圖  10  地應力場對圍巖損傷破裂區分布的影響(σH=45 MPa, σh=13 MPa)。(a) 損傷云圖;(b) 彈性模量云圖

    Figure  10.  Effect of geostress conditions on the damage zone of country rock (σH=45MPa, σh=13MPa): (a) damage; (b) elastic modulus

    圖  11  紗嶺金礦主井主應力及孔隙水壓力值隨深度變化圖

    Figure  11.  Variations of principal stress and pore pressure with depth in the main shaft of Shaling gold mine

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Xie H P, Gao F, Ju Y. Research and development of rock mechanics in deep ground engineering. Chin J Rock Mech Eng, 2015, 34(11): 2161

    謝和平, 高峰, 鞠楊. 深部巖體力學研究與探索. 巖石力學與工程學報, 2015, 34(11):2161
    [2] Qian Q H. The current development of nonlinear rock mechanics: the current development of nonlinear rock mechanics: the mechanics problems of deep rock mass//Proceedings of the 8th Rock Mechanics and Engineering Conference. Chengdu, 2004: 10

    錢七虎. 非線性巖石力學的新進展—深部巖體力學的若干關鍵問題//第八次全國巖石力學與工程學術大會論文集. 成都, 2004: 10
    [3] He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng, 2005, 24(16): 2803 doi: 10.3321/j.issn:1000-6915.2005.16.001

    何滿潮, 謝和平, 彭蘇萍, 等. 深部開采巖體力學研究. 巖石力學與工程學報, 2005, 24(16):2803 doi: 10.3321/j.issn:1000-6915.2005.16.001
    [4] Xie H P. Research framework and anticipated results of deep rock mechanics and mining theory. Adv Eng Sci, 2017, 49(2): 1

    謝和平. “深部巖體力學與開采理論”研究構想與預期成果展望. 工程科學與技術, 2017, 49(2):1
    [5] Cai M F, Brown E T. Challenges in the mining and utilization of deep mineral resources. Engineering, 2017, 3(4): 432 doi: 10.1016/J.ENG.2017.04.027
    [6] Feng X T, Liu J P, Chen B R, et al. Monitoring, warning, and control of rockburst in deep metal mines. Engineering, 2017, 3(4): 538 doi: 10.1016/J.ENG.2017.04.013
    [7] Cai M F, Ji D, Guo Q F. Study of rockburst prediction based on in-situ stress measurement and theory of energy accumulation caused by mining disturbance. Chin J Rock Mech Eng, 2013, 32(10): 1973

    蔡美峰, 冀東, 郭奇峰. 基于地應力現場實測與開采擾動能量積聚理論的巖爆預測研究. 巖石力學與工程學報, 2013, 32(10):1973
    [8] Jiang Y D, Zhao Y X. State of the art: investigation on mechanism, forecast and control of coal bumps in China. Chin J Rock Mech Eng, 2015, 34(11): 2188

    姜耀東, 趙毅鑫. 我國煤礦沖擊地壓的研究現狀:機制、預警與控制. 巖石力學與工程學報, 2015, 34(11):2188
    [9] Xie H P. Research review of the state key research development program of China: deep rock mechanics and mining theory. J China Coal Soc, 2019, 44(5): 1283

    謝和平. 深部巖體力學與開采理論研究進展. 煤炭學報, 2019, 44(5):1283
    [10] Zhu W C, Wei C H, Tian J, et al. Coupled thermal-hydraulic-mechanical model during rock damage and its preliminary application. Rock Soil Mech, 2009, 30(12): 3851 doi: 10.3969/j.issn.1000-7598.2009.12.050

    朱萬成, 魏晨慧, 田軍, 等. 巖石損傷過程中的熱?流?力耦合模型及其應用初探. 巖土力學, 2009, 30(12):3851 doi: 10.3969/j.issn.1000-7598.2009.12.050
    [11] Zhou H W, Xie H P, Zuo J P. Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths. Adv Mech, 2005, 35(1): 91 doi: 10.3321/j.issn:1000-0992.2005.01.009

    周宏偉, 謝和平, 左建平. 深部高地應力下巖石力學行為研究進展. 力學進展, 2005, 35(1):91 doi: 10.3321/j.issn:1000-0992.2005.01.009
    [12] Li C H, Bu L, Wei X M, et al. Current status and future trends of deep mining safety mechanism and disaster prevention and control. Chin J Eng, 2017, 39(8): 1129

    李長洪, 卜磊, 魏曉明, 等. 深部開采安全機理及災害防控現狀與態勢分析. 工程科學學報, 2017, 39(8):1129
    [13] Tang C A. Catastrophe in Rock Unstable Failure. Beijing: China Coal Industry Publishing House, 1993

    唐春安. 巖石破裂過程中的災變. 北京: 煤炭工業出版社, 1993
    [14] Tang C A, Liu H, Lee P K K, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression - Part I: effect of heterogeneity. Int J Rock Mech Min Sci, 2000, 37(4): 555 doi: 10.1016/S1365-1609(99)00121-5
    [15] Tang C A, Tham L G, Lee P K K, et al. Coupled analysis of flow, stress and damage (FSD) in rock failure. Int J Rock Mech Min Sci, 2002, 39(4): 477 doi: 10.1016/S1365-1609(02)00023-0
    [16] Liu L Y, Zhu W C, Wei C H, et al. Microcrack-based geomechanical modeling of rock-gas interaction during supercritical CO2 fracturing. J Petrol Sci Eng, 2018, 164: 91 doi: 10.1016/j.petrol.2018.01.049
    [17] Liu L Y, Ji H G, Elsworth D, et al. Dual-damage constitutive model to define thermal damage in rock. Int J Rock Mech Min Sci, 2020, 126: 104185 doi: 10.1016/j.ijrmms.2019.104185
    [18] Yang T H, Tham L G, Tang C A, et al. Influence of heterogeneity of mechanical properties on hydraulic fracturing in permeable rocks. Rock Mech Rock Eng, 2004, 37(4): 251 doi: 10.1007/s00603-003-0022-z
    [19] Hoek E, Martin C D. Fracture initiation and propagation in intact rock-a review. J Rock Mech Geotech Eng, 2014, 6(4): 287 doi: 10.1016/j.jrmge.2014.06.001
    [20] Qian Q H. Challenges faced by underground projects construction safety and countermeasures. Chin J Rock Mech Eng, 2012, 31(10): 1945 doi: 10.3969/j.issn.1000-6915.2012.10.001

    錢七虎. 地下工程建設安全面臨的挑戰與對策. 巖石力學與工程學報, 2012, 31(10):1945 doi: 10.3969/j.issn.1000-6915.2012.10.001
    [21] Li H B, Liu M C, Xing W B, et al. Failure mechanisms and evolution assessment of the excavation damaged zones in a large-scale and deeply buried underground powerhouse. Rock Mech Rock Eng, 2017, 50(7): 1883
    [22] Chang S H, Lee C I, Lee Y K. An experimental damage model and its application to the evaluation of the excavation of the excavation damage zone. Rock Mech Rock Eng, 2007, 40(3): 245 doi: 10.1007/s00603-006-0113-8
    [23] Liu N, Zhang C S, Chu W J. Depth of fracture and damage in deep-buried surrounding rock and bolt length design. Chin J Rock Mech Eng, 2015, 34(11): 2278

    劉寧, 張春生, 褚衛江. 深埋圍巖破裂損傷深度分析與錨桿長度設計. 巖石力學與工程學報, 2015, 34(11):2278
    [24] Li L C, Tang C A, Wang S Y, et al. A coupled thermo-hydrologic-mechanical damage model and associated application in a stability analysis on a rock pillar. Tunnell Undergr Space Technol, 2013, 34: 38
    [25] Zhang Y J, Xu T. Hydro-mechanical coupled analysis of the variable permeability coefficient of fractured rock mass. Appl Mech Mater, 2013, 477-478: 531 doi: 10.4028/www.scientific.net/AMM.477-478.531
    [26] Ma T H, Zhang W D, Xu T. Damage and failure mechanism of tunnels in jointed rock mass. J Northeast Univ (Nat Sci), 2013, 34(10): 1485

    馬天輝, 張文東, 徐濤. 節理巖體中隧洞圍巖的損傷破壞機理. 東北大學學報: 自然科學版, 2013, 34(10):1485
    [27] Liu L Y, Li L C, Elsworth D, et al. The impact of oriented perforation on fracture propagation and complexity in hydraulic fracturing. Processes, 2018, 6(11): 213 doi: 10.3390/pr6110213
    [28] Zhu W C, Tang C A, Yang T H, et al. Constitutive relationship of mesoscopic elements used in RFPA2D and its validations. Chin J Rock Mech Eng, 2003, 22(1): 24 doi: 10.3321/j.issn:1000-6915.2003.01.004

    朱萬成, 唐春安, 楊天鴻, 等. 巖石破裂過程分析(RFPA2D)系統的細觀單元本構關系及驗證. 巖石力學與工程學報, 2003, 22(1):24 doi: 10.3321/j.issn:1000-6915.2003.01.004
    [29] Zhu W C, Liu L Y, Liu J S, et al. Impact of gas adsorption-induced coal damage on the evolution of coal permeability. Int J Rock Mech Min Sci, 2018, 101: 89 doi: 10.1016/j.ijrmms.2017.11.007
    [30] Yu R S, Yang Y, Xu D L. Study on the application of Hoek-Brown strength criterion in estimating mechanics parameters of deep rock mass. J Yangtze River Sci Res Inst, 2018, 35(1): 123 doi: 10.11988/ckyyb.20160924

    於汝山, 楊宜, 許冬麗. Hoek-Brown強度準則在深部巖體力學參數估算中的應用研究. 長江科學院院報, 2018, 35(1):123 doi: 10.11988/ckyyb.20160924
  • 加載中
圖(11)
計量
  • 文章訪問數:  2453
  • HTML全文瀏覽量:  1172
  • PDF下載量:  55
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-11-05
  • 刊出日期:  2020-06-01

目錄

    /

    返回文章
    返回