Review of application of MOF materials for removal of environmental pollutants from water (I)
-
摘要: 金屬有機骨架(Metal-organic frameworks,MOFs)是一類有機?無機雜化材料,通常是指金屬離子或金屬簇與含氮、氧剛性有機配體通過自組裝過程形成的功能性多孔材料。MOF材料具有豐富的可設計的結構類型、可調控的化學功能、低密度的骨架、超高的比表面積,以及可功能化的永久的孔空間,在氣體存儲與分離、催化、傳感、藥物運輸與緩釋等領域都有廣泛的應用潛力。近年來,MOF及其復合材料已經被應用于多種污染物的去除。本文對近年來MOF材料去除水環境中重金屬、有機物的相關研究進行了總結與評述。本篇是該主題的第一篇,主要針對MOF材料在水體重金屬污染物去除方面的研究進行論述。通過對以往的研究分析可知,MOF材料對常見重金屬Pb2+、Cu2+、Cd2+、Co2+、Ag+、Cs+、Sr2+、Hg(II)以及
$ {\rm{TcO}}_4^ - $ 、Se(VI)、As(III)、As(V)均具有高效吸附性能,甚至部分MOF材料的吸附性能遠高于傳統吸附材料。主要的吸附機理包括:靜電引力、配位/螯合作用、離子交換作用、孔道吸附(物理吸附)等。最后,基于以往的研究成果對未來的研究趨勢進行了展望。-
關鍵詞:
- 金屬有機骨架(MOFs)材料 /
- 重金屬 /
- 去除特性 /
- 機理
Abstract: Metal-organic frameworks (MOFs) are a class of organic–inorganic hybrid functional materials that are generally formed via the self-assembly of metal ions or metal clusters and rigid organic ligands with nitrogen and oxygen atoms. A wide range of potential applications for MOF materials includes gas storage and separation, catalysis, sensing, and drug transportation and release, which is attributable to their versatile designable structures, modifiable chemical functionality, low-density frameworks, large specific surface areas, and functional and permanent pore space. In the past decade, MOFs and their composite materials have also been employed to remove various contaminants from the environment. This paper presented the significant research progress and outcomes achieved using MOF materials in the removal of environmental pollutants from water, based on a review of related studies regarding the removal of heavy metals and organic pollutants from water environments. This represented the first part of a larger paper in which the progress of MOF materials research was presented with respect to the removal of heavy metals from aqueous solution. The presence of heavy metals in water is a global environmental issue that has been receiving considerable attention worldwide. According to previous research reports, MOF materials have high adsorption capacities for common heavy metals, such as Pb2+, Cu2+, Cd2+, Co2+, Ag+, Cs+, Sr2+, Hg(II),$ {\rm{TcO}}_4^ - $ , Se(VI), As(III), and As(V). Some MOF materials have even higher adsorption capacities than conventional adsorbent materials. The adsorption mechanism mainly involves electrostatic attraction, coordination/chelation, ion exchange, and pore adsorption (physical adsorption). Based on a review of previous studies, it is believed that the future research field includes but is not limited to the following: (1) the structure–activity relationship between the MOF structure and heavy-metal removal, (2) the functionalization, surface modification, and pore size adjustment technology of MOF, or the preparation of composite MOF materials, (3) further study of the regulation of the defect structures of MOFs to develop new MOF materials with higher adsorption efficiency, (4) improving the recyclability of MOF materials, and (5) developing new MOF materials with high structural stability, high adsorption capacities, high selectivity, low cost, and which are easily reused. -
圖 2 三聚氰胺?MOF對Pb(II)的吸附. (a)MOF和三聚氰胺?MOF的Zeta電位隨pH值的變化;(b)不同pH值條件下三聚氰胺?MOF的吸附容量變化;(c)三聚氰胺?MOF吸附Pb(II)的機理[40]
Figure 2. Adsorption of Pb (II) by melamine?MOF: (a) changes in Zeta potential with pH values of MOFs and melamine–MOFs; (b) changes in adsorption capacities of melamine–MOFs at various pH values; (c) mechanism of Pb(II) adsorption onto melamine–MOFs[40]
圖 3 SCU-100的結構. (a)沿c軸觀察的SCU-100-Re透視堆砌結構;(b)SCU-100-Re的單一網絡晶體結構;(c)SCU-100-Re的晶體結構不對稱單元;(d)SCU-100-Re中氫鍵網絡[58]
Figure 3. Structure of the SCU-100: (a) perspective of packing structure of SCU-100-Re viewed along c–axis; (b) single-network crystal structure of SCU-100-Re; (c) crystal asymmetric structure unit of SCU-100-Re; (d) hydrogen bond networks in SCU-100-Re[58]
圖 4 (a)與SCU-100進行陰離子交換過程中的
${\rm{TcO}}_4^{ - 1}$ 水溶液紫外可見吸收光譜;(b)${\rm{TcO}}_4^{ - 1}$ 和${\rm{ReO}}_4^{ - 1}$ 去除率隨吸附時間的變化;(c)不同材料對${\rm{ReO}}_4^{ - 1}$ 的吸附動力學曲線對比;(d)不同材料對應的${\rm{ReO}}_4^{ - 1}$ 吸附等溫線對比[58]Figure 4. (a) UV-Vis spectra of aqueous
${\rm{TcO}}_4^{ - 1}$ solution during the anion exchange by SCU-100; (b) removal of${\rm{TcO}}_4^{ - 1}$ and${\rm{ReO}}_4^{ - 1}$ by SCU-100 as a function of contact time; (c) comparison of the sorption kinetics of${\rm{ReO}}_4^{ - 1}$ by different materials; (d) adsorption isotherms of${\rm{ReO}}_4^{ - 1}$ by cationic SCU-100, compared with other materials[58]圖 5 SCU-8的晶體結構圖. (a)Th4+的配位幾何結構;(b)作為二級構筑單元(SBU)的[Th3(COO)9O(H2O)3.78]+陽離子簇;(c)結構中的六角形管狀通道;(d)沿c軸的陽離子介孔骨架結構圖(無序的羧基(O3,O4)、配位水(O6)和bptc3-(H3bptc=[1,1′-biphenyl]-3,4′,5-tricarboxylicacid)配體僅顯示主要構象)[59]
Figure 5. Crystal structure of SCU-8: (a) coordination geometry of Th4+; (b) cationic cluster of [Th3(COO)9O(H2O)3.78]+ as the SBU; (c) hexagonal tubular channels in the structure; (d) cationic mesoporous framework structure along c-axis (only the major conformations are shown, including the disordered carboxylate group (O3, O4), coordinating water (O6), and bptc3? ligand)[59]
圖 7 ZJU-101對
${\rm{C}}{{\rm{r}}_{\rm{2}}}{\rm{O}}_7^{2 - }$ 的等溫吸附曲線及機理. (a)ZJU-101與${\rm{C}}{{\rm{r}}_{\rm{2}}}{\rm{O}}_7^{2 - }$ 的離子交換過程;(b)MOF-867和ZJU-101的N2吸附等溫線;(c)正配體和負${\rm{C}}{{\rm{r}}_{\rm{2}}}{\rm{O}}_7^{2 - }$ 之間的庫侖吸引力示意圖[62]Figure 7. Isothermal adsorption curves and mechanism of ZJU-101 for
${\rm{C}}{{\rm{r}}_{\rm{2}}}{\rm{O}}_7^{2 - }$ : (a) ion exchange process of${\rm{C}}{{\rm{r}}_{\rm{2}}}{\rm{O}}_7^{2 - }$ with ZJU-101; (b) N2 adsorption isotherms of MOF-867 and ZJU-101; (c) schematic illustration of electrostatic interaction between positive ligand and negative${\rm{C}}{{\rm{r}}_{\rm{2}}}{\rm{O}}_7^{2 - }$ [62]圖 8 一維MnO2@ZIF-8材料及其對As(III)的同時氧化和吸附去除. (a) 合成后的MnO2@ZIF-8的掃描電鏡圖像;(b, c) 透射電鏡和高分辨透射電鏡圖;(d) 不同MnO2納米線添加量樣品的X射線衍射圖;(e) MnO2@ZIF-8去除As(III)的過程示意圖(藍色部分代表ZIF-8顆粒,紅色部分代表As(III)離子); (f) 甲醇溶液中形成MnO2@ZIF-8納米線的可能機制[73]
Figure 8. One-dimensional MnO2@ZIF-8 material and its simultaneous oxidation and adsorption removal of As(III): (a) SEM image of the as-synthesized MnO2@ZIF-8 NWs; (b, c) TEM and HRTEM images, respectively; (d) XRD patterns of the products when controlling different MnO2 nanowire additions; (e) schematic illustration of the As(III) removal process from MnO2@ZIF-8 NWs (blue area illustrates ZIF-8 particles and the red particles are As(III) ions); (f) proposed mechanism for the formation of MnO2@ZIF-8 nanowires in methanol solution[73]
表 1 不同MOF材料對陽離子態重金屬的吸附性能及機理對比
Table 1. Comparison of adsorption performance and mechanisms of different MOFs for cationic heavy metals
Adsorbent Heavy metal Adsorption capacity /(mg?g?1) Adsorption mechanism References ZIF-8 Pb2+/Cu2+ 1119.80/454.72 Not reported [32] ZIF-67 Pb2+/Cu2+ 1348.42/617.51 Not reported [32] ED-MIL-101(Cr) Pb2+ 81.09 Coordination [35] Zr-MOFs Pb2+/Cd2+ 166.74/177.35 Coordination [36] MOF Pb2+ 616.64 Electrostatic attraction,Coordination [37] Cu3(BTC)2-SO3H Cd2+ 88.7 Chelation [38] HKUST-1-MW@H3PW12O40 Pb2+/Cd2+ 98.18/32.45 Chemisorption [39] Melamine–MOFs Pb2+ 205 Coordination [40] UiO-66@CA Pb2+/Cu2+ 81.30/31.23 Not reported [41] UiO-66-NH2@CA Pb2+/Cu2+ 89.40/39.33 Not reported [41] MOF(AMOF-1) Cd2+ 41 Ion exchange [42] HS-mSi@MOF-5 Cd2+ 98 Coordination [43] MOF Cd2+ 100 Ion exchange [44] UiO-66-Schiff Co2+ 256 Coordination [46] MIL-53(Al)–MOF Ag+ 183 Coordination [47] Nd-BTC-MOF Cs+/Sr2+ 86/58 Physical adsorption [49] Ca-MOF Pb2+/Cd2+ 522/220 Ion exchange [50] UiO-66-NHC(S)NHMe Hg(II) 769 Coordination [52] MIL-101-Thymine Hg(II) 51.27 Coordination [55] 表 2 不同MOF材料對陰離子態重金屬的吸附性能及機理對比
Table 2. Comparison of adsorption performances and mechanisms of different MOFs for anion heavy metals
Adsorbents Heavy metals Adsorption capacity/(mg?g?1) Adsorption mechanism References SCU-100 TcO4- 541.00 Ion exchange [58] Zr6-MOF Se(VI) 86.60 Ion exchange [60] 1-NO3 Cr(VI) 37.00 Ion exchange [61] ZJU-101 Cr(VI) 245.00 Electrostatic attraction,Ion exchange [62] MIL-100(Fe) As(V) 57.71 Coordination [67] UiO-66 As(III)/As(V) 10.00/40.00 Coordination [68] MIL-53(Fe) As(V) 21.27 Electrostatic attraction,Coordination [69] MIL-100(Fe) As(V) 110.00 Electrostatic attraction,Coordination [70] ZIF-8 As(III)/As(V) 49.49/60.03 Electrostatic attraction,Coordination [71] Fe3O4@ZIF-8 As(III) 100 Coordination [72] MnO2@ZIF-8 As(III) 140.27 Not reported [73] 259luxu-164 -
參考文獻
[1] Yaghi O M, Li G M, Li H L. Selective binding and removal of guests in a microporous metal-organic framework. Nature, 1995, 378(6558): 703 doi: 10.1038/378703a0 [2] Kitagawa S, Kitaura R, Noro S I. Functional porous coordination polymers. Angew Chem Int Ed, 2004, 43(18): 2334 doi: 10.1002/anie.200300610 [3] Judeinstein P, Sanchez C. Hybrid organic-inorganic materials: a land of multidisciplinarity. J Mater Chem, 1996, 6(4): 511 doi: 10.1039/JM9960600511 [4] Janiak C. Functional organic analogues of zeolites based on metal-organic coordination frameworks. Angew Chem Int Ed, 1997, 36(13-14): 1431 [5] Yaghi O M, Li H L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J Am Chem Soc, 1995, 117(41): 10401 doi: 10.1021/ja00146a033 [6] Li H L, Eddaoudi M, Groy T L, et al. Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC) (BDC=1,4-Benzenedicarboxylate). J Am Chem Soc, 1998, 120(33): 8571 doi: 10.1021/ja981669x [7] Li H L, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402(6759): 276 doi: 10.1038/46248 [8] Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 2004, 427(6974): 523 doi: 10.1038/nature02311 [9] Rosi N L, Kim J, Eddaoudi M, et al. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc, 2005, 127(5): 1504 doi: 10.1021/ja045123o [10] Park K S, Ni Z, C?té A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci, 2006, 103(27): 10186 doi: 10.1073/pnas.0602439103 [11] Huang X C, Zhang J P, Chen X M. [Zn(bim)2]?(H2O)1.67: metal-organic open skeleton with sodalite topology. Chin Sci Bull, 2003, 48(14): 1491 doi: 10.3321/j.issn:0023-074X.2003.14.004黃曉春, 張杰鵬, 陳小明. [Zn(bim)2]?(H2O)1.67: 具有方鈉石拓撲結構的金屬?有機敞開骨架. 科學通報, 2003, 48(14):1491 doi: 10.3321/j.issn:0023-074X.2003.14.004 [12] Huang X C, Lin Y Y, Zhang J P, et al. Ligand-directed strategy for Zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed, 2006, 45(10): 1557 doi: 10.1002/anie.200503778 [13] Hayashi H, C?téA P, Furukawa H, et al. Zeolite A imidazolate frameworks. Nature Mater, 2007, 6(7): 501 doi: 10.1038/nmat1927 [14] Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 2008, 319(5865): 939 doi: 10.1126/science.1152516 [15] Wang B, C?té A P, Furukawa H, et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 2008, 453(7192): 207 doi: 10.1038/nature06900 [16] Férey G, Serre C, Mellot‐Draznieks C, et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew Chem Int Ed, 2004, 43(46): 6296 doi: 10.1002/anie.200460592 [17] Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743): 2040 doi: 10.1126/science.1116275 [18] Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science, 1999, 283(5405): 1148 doi: 10.1126/science.283.5405.1148 [19] Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc, 2008, 130(42): 13850 doi: 10.1021/ja8057953 [20] Yang S H, Sun J L, Ramirez-Cuesta A J, et al. Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nature Chem, 2012, 4(11): 887 doi: 10.1038/nchem.1457 [21] Farha O K, Eryazici I, Jeong N C, et al. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J Am Chem Soc, 2012, 134(36): 15016 doi: 10.1021/ja3055639 [22] Savage M, Cheng Y Q, Easun T L, et al. Selective adsorption of sulfur dioxide in a robust metal-organic framework material. Adv Mater, 2016, 28(39): 8705 doi: 10.1002/adma.201602338 [23] Wang C H, Liu X L, Demir N K, et al. Applications of water stable metal-organic frameworks. Chem Soc Rev, 2016, 45: 5107 doi: 10.1039/C6CS00362A [24] Canivet J, Fateeva A, Guo Y M, et al. Water adsorption in MOFs: fundamentals and applications. Chem Soc Rev, 2014, 43: 5594 doi: 10.1039/C4CS00078A [25] Wen J, Fang Y, Zeng G M. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: a review of studies from the last decade. Chemosphere, 2018, 201: 627 doi: 10.1016/j.chemosphere.2018.03.047 [26] Li J, Wang X X, Zhao G X, et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev, 2018, 47: 2322 doi: 10.1039/C7CS00543A [27] Liu C, Yu L Q, Zhao Y T, et al. Recent advances in metal-organic frameworks for adsorption of common aromatic pollutants. Mikrochim Acta, 2018, 185: 342 doi: 10.1007/s00604-018-2879-2 [28] Ayati A, Shahrak M N, Tanhaei B, et al. Emerging adsorptive removal of azo dye by metal-organic frameworks. Chemosphere, 2016, 160: 30 doi: 10.1016/j.chemosphere.2016.06.065 [29] Qiu J, Zhang X, Feng Y, et al. Modified metal-organic frameworks as photocatalysts. Appl Catal B-Environ, 2018, 231: 317 doi: 10.1016/j.apcatb.2018.03.039 [30] Peterson G W, Mahle J J, DeCoste J B, et al. Extraordinary NO2 removal by the metal-organic framework UiO-66-NH2. Angew Chem Int Ed, 2016, 55(21): 6235 doi: 10.1002/anie.201601782 [31] Jun B M, Kim S, Kim Y, et al. Comprehensive evaluation on removal of lead by graphene oxide and metal organic framework. Chemosphere, 2019, 231: 82 doi: 10.1016/j.chemosphere.2019.05.076 [32] Huang Y, Zeng X F, Guo L L, et al. Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep Purif Technol, 2018, 194: 462 doi: 10.1016/j.seppur.2017.11.068 [33] Lee Y C, Yang J W. Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. J Ind Eng Chem, 2012, 18(3): 1178 doi: 10.1016/j.jiec.2012.01.005 [34] Tofighy M A, Mohammadi T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater, 2011, 185(1): 140 doi: 10.1016/j.jhazmat.2010.09.008 [35] Luo X B, Ding L, Luo J M. Adsorptive removal of Pb(II) ions from aqueous samples with amino-functionalization of metal-organic frameworks MIL-101(Cr). J Chem Eng Data, 2015, 60(6): 1732 doi: 10.1021/je501115m [36] Wang K, Gu J W, Yin N. Efficient removal of Pb(II) and Cd(II) using NH2-functionalized Zr-MOFs via rapid microwave-promoted synthesis. Ind Eng Chem Res, 2017, 56(7): 880 [37] Yu C X, Shao Z C, Hou H W. A functionalized metal-organic framework decorated with O? groups showing excellent performance for lead(II) removal from aqueous solution. Chem Sci, 2017, 8: 7611 doi: 10.1039/C7SC03308G [38] Wang Y, Ye G Q, Chen H H, et al. Functionalized metal-organic framework as a new platform for efficient and selective removal of cadmium (II) from aqueous solution. J Mater Chem A, 2015, 3(29): 15292 doi: 10.1039/C5TA03201F [39] Zou F, Yu R H, Li R G, et al. Microwave-assisted synthesis of HKUST-1 and functionalized HKUST-1-@H3PW12O40: Selective adsorption of heavy metal ions in water analyzed with synchrotron radiation. ChemPhysChem, 2013, 14(12): 2825 doi: 10.1002/cphc.201300215 [40] Yin N, Wang K, Xia Y A, et al. Novel melamine modified metal-organic frameworks for remarkably high removal of heavy metal Pb(II). Desalination, 2018, 430: 120 doi: 10.1016/j.desal.2017.12.057 [41] Lei C, Gao J, Ren W, et al. Fabrication of metal-organic frameworks@cellulose aerogels composite materials for removal of heavy metal ions in water. Carbohydr Polym, 2019, 205: 35 doi: 10.1016/j.carbpol.2018.10.029 [42] Chakraborty A, Bhattacharyya S, Hazra A, et al. Post-synthetic metalation in an anionic MOF for efficient catalytic activity and removal of heavy metal ions from aqueous solution. Chem Commun, 2016, 52: 2831 doi: 10.1039/C5CC09814A [43] Zhang J, Xiong Z, Li C, et al. Exploring a thiol-functionalized MOF for elimination of lead and cadmium from aqueous solution. J Mol Liq, 2016, 221: 43 doi: 10.1016/j.molliq.2016.05.054 [44] Rahimi E, Mohaghegh N. Removal of toxic metal ions from Sungun acid rock drainage using mordenite zeolite, graphene nanosheets, and a novel metal-organic framework. Mine Water Environ, 2016, 35(1): 18 doi: 10.1007/s10230-015-0327-7 [45] Tahmasebi E, Masoomi M Y, Yamini Y, et al. Application of mechanosynthesized azine-decorated zinc(II) metal-organic frameworks for highly efficient removal and extraction of some heavy-metal ions from aqueous samples: a comparative study. Inorg Chem, 2014, 54(2): 425 [46] Yuan G Y, Tian Y, Liu J, et al. Schiff base anchored on metal-organic framework for Co(II) removal from aqueous solution. Chem Eng J, 2017, 326: 691 doi: 10.1016/j.cej.2017.06.024 [47] Cheng X Q, Liu M, Zhang A F, et al. Size-controlled silver nanoparticles stabilized on thiol-functionalized MIL-53(Al) frameworks. Nanoscale, 2015, 7(21): 9738 doi: 10.1039/C5NR01292A [48] Conde-González J E, Pe?a-Méndez E M, Rybáková S, et al. Adsorption of silver nanoparticles from aqueous solution on copper-based metal organic frameworks (HKUST-1). Chemosphere, 2016, 150: 659 doi: 10.1016/j.chemosphere.2016.02.005 [49] Asgari P, Mousavi S H, Aghayan H, et al. Nd-BTC metal-organic framework (MOF); synthesis, characterization and investigation on its adsorption behavior toward cesium and strontium ions. Microchem J, 2019, 150: 104188 doi: 10.1016/j.microc.2019.104188 [50] Pournara A D, Margariti A, Tarlas G D, et al. A Ca2+ MOF combining highly efficient sorption and capability for voltammetric determination of heavy metal ions in aqueous media. J Mater Chem A, 2019, 7(25): 15432 doi: 10.1039/C9TA03337H [51] Liu T, Che J X, Hu Y Z, et al. Alkenyl/thiol-derived metalorganic frameworks (MOFs) by means of postsynthetic modification for effective mercury adsorption. Chem Eur J, 2014, 20(43): 14090 doi: 10.1002/chem.201403382 [52] Saleem H, Rafique U, Davies R P. Investigations on post-synthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution. Microporous Mesoporous Mater, 2016, 221: 238 doi: 10.1016/j.micromeso.2015.09.043 [53] Luo F, Chen J L, Dang L L, et al. High-performance Hg2+ removal from ultra-low-concentration aqueous solution using both acylamide- and hydroxyl-functionalized metal-organic framework. J Mater Chem A, 2015, 3(18): 9616 doi: 10.1039/C5TA01669J [54] Yee K K, Reimer N, Liu J, et al. Effective mercury sorption by thiol-laced metal-organic frameworks: in strong acid and the vapor phase. J Am Chem Soc, 2013, 135(21): 7795 doi: 10.1021/ja400212k [55] Luo X B, Shen T T, Ding L, et al. Novel thymine-functionalized MIL-101 prepared by post-synthesis and enhanced removal of Hg2+ from water. J Hazard Mater, 2016, 306: 313 doi: 10.1016/j.jhazmat.2015.12.034 [56] Song H X, Liu Y G, Xu W H, et al. Simultaneous Cr(VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095. Bioresource Technol, 2009, 100(21): 5079 doi: 10.1016/j.biortech.2009.05.060 [57] Bai Z L, Wang Y L, Li Y X, et al. First cationic uranyl-organic framework with anion-exchange capabilities. Inorg Chem, 2016, 55(13): 6358 doi: 10.1021/acs.inorgchem.6b00930 [58] Sheng D P, Zhu L, Xu C, et al. Efficient and selective uptake of $ {\rm{TcO}}^-_4 $ \normalsize by a cationic metal-organic framework material with open Ag+ sites. Environ Sci Technol, 2017, 51(6): 3471 doi: 10.1021/acs.est.7b00339[59] Li Y X, Yang Z X, Wang Y L, et al. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nature Commun, 2017, 8: 1354 doi: 10.1038/s41467-017-01208-w [60] Li J, Liu Y, Wang X X, et al. Experimental and theoretical study on selenate uptake to zirconium metal-organic frameworks: Effect of defects and ligands. Chem Eng J, 2017, 330: 1012 doi: 10.1016/j.cej.2017.08.038 [61] Li L L, Feng X Q, Han R P, et al. Cr(VI) removal via anion exchange on a silver-triazolate MOF. J Hazard Mater, 2017, 321: 622 doi: 10.1016/j.jhazmat.2016.09.029 [62] Zhang Q, Yu J C, Cai J F, et al. A porous Zr-cluster-based cationic metal-organic framework for highly efficient Cr2O72? removal from water. Chem Commun, 2015, 51(79): 14732 doi: 10.1039/C5CC05927E [63] Aboutorabi L, Morsali A, Tahmasebi E, et al. Metal-organic framework based on isonicotinate N-oxide for fast and highly efficient aqueous phase Cr(VI) adsorption. Inorg Chem, 2016, 55(11): 5507 doi: 10.1021/acs.inorgchem.6b00522 [64] Wu S B, Ge Y J, Wang Y Q, et al. Adsorption of Cr(VI) on nano UiO-66-NH2 MOFs in water. Environ Technol, 2018, 39(15): 1937 doi: 10.1080/09593330.2017.1344732 [65] Niu H Y, Zheng Y, Wang S H, et al. Stable hierarchical microspheres of 1D Fe-gallic acid MOFs for fast and efficient Cr(VI) elimination by a combination of reduction, metal substitution and coprecipitation. J Mater Chem A, 2017, 5(32): 16600 doi: 10.1039/C7TA04006G [66] Zhu K R, Chen C L, Xu H, et al. Cr(VI) reduction and immobilization by core-double-shell structured magnetic polydopamine@zeolitic idazolate frameworks-8 microspheres. ACS Sustainable Chem Eng, 2017, 5(8): 6795 doi: 10.1021/acssuschemeng.7b01036 [67] Zhu B J, Yu X Y, Jia Y, et al. Iron and 1, 3, 5-benzenetricarboxylic metal-organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions. J Phys Chem C, 2012, 116(15): 8601 doi: 10.1021/jp212514a [68] Audu C O, Nguyen H G T, Chang C Y, et al. The dual capture of AsV and AsIII by UiO-66 and analogues. Chem Sci, 2016, 7(10): 6492 doi: 10.1039/C6SC00490C [69] Vu T A, Le G H, Dao C D, et al. Arsenic removal from aqueous solutions by adsorption using novel MIL-53(Fe) as a highly efficient adsorbent. RSC Adv, 2015, 5(10): 5261 [70] Cai J H, Wang X Y, Zhou Y, et al. Selective adsorption of arsenate and the reversible structure transformation of the mesoporous metal-organic framework MIL-100(Fe). Phys Chem Chem Phys, 2016, 18(16): 10864 doi: 10.1039/C6CP00249H [71] Jian M P, Liu B, Zhang G S, et al. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8(ZIF-8) nanoparticles. Colloids Surf A, 2015, 465: 67 doi: 10.1016/j.colsurfa.2014.10.023 [72] Huo J B, Xu L, Yang J C E, et al. Magnetic responsive Fe3O4-ZIF-8 core-shell composites for efficient removal of As(III) from water. Colloids Surf A, 2018, 539: 59 doi: 10.1016/j.colsurfa.2017.12.010 [73] Jian M P, Wang H, Liu R P, et al. Self-assembled one-dimensional MnO2@zeolitic imidazolate framework-8 nanostructures for highly efficient arsenite removal. Environ Sci Nano, 2016, 3(5): 1186 doi: 10.1039/C6EN00246C -