Low-temperature selective catalytic reduction of NOz and anti-toxicity of MnOx?FeOy/TiO2?ZrO2?CeO2
-
摘要: 用溶膠凝膠法制備TiO2?ZrO2?CeO2(摩爾比4∶1∶1.25)載體,檸檬酸溶液浸漬法進一步負載MnOx及MnOx?FeOy,進而合成了一種Fe摻雜的新型Mn基復合氧化物催化劑,考察其NH3選擇性催化還原NO性能及抗硫性能。它在含硫氛圍中有良好的低溫選擇性催化還原(SCR)能力和抗中毒能力,Fe的引入促進了Mn與TiO2?ZrO2?CeO2載體之間的相互作用,增加了催化劑表面Lewis酸性位點的數量。根據X射線光譜分析,Mn4+,Ce4+和吸附的氧的含量明顯增加,對提高催化劑的性能非常有利。根據熱重分析,在SO2和H2O同時存在的環境下,Fe的存在使硫酸銨和硫酸鈰的產生量減少,抑制了錳的硫酸化,進一步提高了催化劑的抗毒性。MnOx(12.5%)?FeOy(0.8)/TiO2?ZrO2?CeO2(4∶1∶1.25)催化劑在180 ℃下,同時通入體積分數10% H2O和125×10?6 SO2 240 min,NOz轉化率可保持在75.6%。根據研究成果,新型錳基復合金屬氧化物催化劑為進一步探索催化劑的SCR反應和抗毒機理提供了基礎,促進了SCR工藝的工業應用。
-
關鍵詞:
- MnOx?FeOy/TiO2?ZrO2?CeO2 /
- 選擇性催化還原 /
- 氮氧化物 /
- 低溫 /
- 抗硫
Abstract: One of the most effective methods for the removal of NOz from industrial flue gas is the technology known as low-temperature selective catalytic reduction (SCR). The main problem limiting the industrial application of catalysts is the need to improve their performances at low temperatures, and the fact that the anti-toxic mechanism of low-temperature denitration catalysts has yet to be explicitly identified. In this study, a TiO2?ZrO2?CeO2 (molar ratio 4∶1∶1.25) carrier was prepared by the sol–gel method, and then loaded the active components MnOx and MnOx?FeOy using the citric-acid-solution impregnation method to synthesize a new type of Fe-modified Mn-based multi-oxidation-state composite catalyst. The performance of this Mn-based composite oxide catalyst was investigated with respect to its NH3-selective catalytic reduction of NO and sulfur resistance. The catalyst exhibits good low-temperature SCR redox ability and anti-poisoning ability in an SO2-containing atmosphere, whereby the introduction of Fe promotes the interaction between Mn and the TiO2?ZrO2?CeO2 (4∶1∶1.25) carrier, and increases the number of Lewis acid sites on the catalyst surface. According to the XPS analysis, the contents of Mn4+, Ce4+, and adsorbed oxygen are obviously increased, which is very advantageous for improving the performance of the catalyst. According to the thermogravimetric analysis, the introduction of Fe reduces the production of ammonium sulfate and ceric sulfate in the atmosphere containing SO2 and H2O, and inhibites the sulfation of manganese. The Fe element thereby increases the anti-toxic ability of the Mn-based multi-oxidation-state composite catalyst. By maintaining the MnOx (12.5%)?FeOy(0.8)/TiO2?ZrO2?CeO2 (4∶1∶1.25) catalyst at 180 ℃, while continuously feeding 10% H2O in volume fraction and 125×10?6 SO2 for 240 min, the NOz conversion rate can be stably maintained at 75.6%. Based on the results of this work, a new type of Mn-based composite oxide catalyst has been developed that provides a foundation for further exploring the SCR reaction of the catalyst and its anti-toxic mechanism to promote the industrial application of the SCR process. -
圖 2 不同Fe/Mn摩爾比的催化劑性能測試圖. (a)活性測試圖;(b)抗硫性測試圖;(c)單獨加水對催化劑M(12.5%)?F(0.8)/TZCO的影響
Figure 2. Catalytic performance of the as-synthesized catalyst with different molar ratios of Fe and Mn: (a) activity test of catalysts; (b) sulfur resistance of catalysts; (c) NOz removal rate of M(12.5%)?F(0.8)/TZCO by adding water alone
圖 3 催化劑抗硫實驗前后的X射線衍射譜圖
Figure 3. XRD spectra of the catalyst before and after the sulfur experiment
a—TZCO (4:1:1.25); b—as-grown catalyst M(12.5%)-F(0.8)/TZCO; c—M(12.5%)?F(0.8)/TZCO after the sulfur-resistance experiment; d—as-grown catalyst M(12.5%)/TZCO; e—using M(12.5%)/TZCO after the sulfur-resistance experiment.
圖 4 催化劑抗硫實驗前后的掃描電鏡分析譜圖. (a)抗硫前的M(12.5%)?F(0.8)/TZCO;(b)抗硫后的M(12.5%)?F(0.8)/TZCO;(c)抗硫前的M(12.5%)/TZCO;(d)抗硫后的M(12.5%)/TZCO
Figure 4. SEM characterizations of the catalysts before and after the sulfur-resistance experiment: (a) as-grown catalyst M(12.5%)?F(0.8)/TZCO; (b) MnOx(12.5%)?F(0.8)/TZCO after the sulfur-resistance experiment; (c) as-grown catalyst M(12.5%)TZCO; (d) M(12.5%)/TZCO after the sulfur-resistance experiment
圖 5 不同元素的X射線電子能譜擬合曲線. (a)Mn2p;(b)Ce3d;(c)Fe2p;(d)O1s(i和ii分別代表M(12.5%)/TZCO and M(12.5%)?F(0.8)/TZCO)
Figure 5. Fitting curves of XPS spectra with different elements: (a) Mn2p; (b) Ce3d; (c) Fe2p; (d) O1s (i and ii curves correspondingly representing the catalysts M(12.5%)/TZCO and M(12.5%)?F(0.8)/TZCO)
表 1 MnOx(12.5%)/TiO2?ZrO2?CeO2抗硫實驗前后的質量損失率
Table 1. Mass loss rates of MnOx(12.5%)/TiO2?ZrO2?CeO2 before and after the sulfur experiment
Mass loss stage Mass loss ratio/% Before sulfur experiment After sulfur experiment Difference Stage A 1.010 1.212 0.202 Stage B 0.686 0.800 0.114 Stage C 1.502 3.387 1.885 Stage D 0.727 1.127 0.400 Total mass loss 3.925 6.526 2.601 表 2 MnOx(12.5%)?FeOy(0.8) /TiO2?ZrO2?CeO2抗硫實驗前后的質量損失率
Table 2. Mass loss rates of MnOx(12.5%)?FeOy(0.8) /TiO2?ZrO2?CeO2 before and after the sulfur experiment
Mass loss stage Mass loss ratio/% Before sulfur experiment After sulfur experiment Difference Stage A 1.378 1.503 0.125 Stage B 0.693 0.901 0.208 Stage C 1.194 2.649 1.455 Stage D 0.844 0.844 0.000 Total mass loss 4.109 5.897 1.788 表 3 兩種催化劑抗硫實驗后的質量損失率對比
Table 3. Comparison of mass loss of two kinds of catalysts after the sulfur experiment
Mass loss stage Mass loss ratio/% M(12.5%)/TZCO M(12.5%)?F(0.8) /TZCO Difference Stage A 0.202 0.125 0.077 Stage B 0.114 0.208 ?0.094 Stage C 1.885 1.455 0.430 Stage D 0.400 0.000 0.400 Total mass loss 2.601 1.788 0.813 259luxu-164 -
參考文獻
[1] Gao R H, Zhang D S, Liu X G, et al. Enhanced catalytic performance of V2O5-WO3/Fe2O3/TiO2 microspheres for selective catalytic reduction of NO by NH3. Catal Sci Technol, 2013, 3(1): 191 [2] Wang L Q, Wang X F, Li H Q, et al. Research on technical method and mechanism of combined desulfurization and denitrification of flue gas from coking furnace with steel slag. J Yanshan Univ, 2016, 40(4): 348 doi: 10.3969/j.issn.1007-791X.2016.04.009王麗秋, 王小方, 李會泉, 等. 焦爐煙氣濕法鋼渣聯合脫硫脫硝工藝及機理研究. 燕山大學學報, 2016, 40(4):348 doi: 10.3969/j.issn.1007-791X.2016.04.009 [3] Liu Z, Zhang S, Junhua L I, et al. Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3. Appl Catal B Environ, 2014, 158-159(3): 11 [4] Tang X F, Li J H, Sun L, et al. Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3. Appl Catal B Environ, 2010, 99(1-2): 156 [5] France L J, Yang Q, Li W, et al. Ceria modified FeMnOx?Enhanced performance and sulphur resistance for low-temperature SCR of NOx. Appl Catal B Environ, 2017, 206: 203 [6] Qiu M Y, Zhan S H, Zhu D D, et al. NH3-SCR performance improvement of mesoporous Sn modified Cr-MnOx catalysts at low temperatures. Catal Today, 2015, 258: 103 [7] Chang H Z, Li J H, Chen X Y, et al. Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia: Enhancement of activity and remarkable resistance to SO2. Catal Commun, 2012, 27: 54 [8] Guo Y H, Wei H Y, Zhao G Y, et al. Low temperature catalytic performance of coal-fired flue gas oxidation over Mn?Co?Ce?Ox. Fuel, 2017, 206: 318 [9] Fang N J, Guo J X, Shu S, et al. Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for NO removal by NH3-SCR. Chem Eng J, 2017, 325: 114 [10] Wu Z B, Jiang B Q, Liu Y, et al. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method. J Hazard Mater, 2007, 145(3): 488 [11] Qi G, Yang R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania. Appl Catal B Environ, 2003, 44(3): 217 [12] Fang C, Zhang D S, Shi L Y, et al. Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3. Catal Sci Technol, 2013, 3(3): 803 [13] Jin R B, Liu Y, Wang Y, et al. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature. Appl Catal B Environ, 2014, 148-149: 582 [14] Li Q. Activity and Antitoxic Properties of MnOx/TiO2?ZrO2?CeO2 for the Low-Temperature Selective Catalytic Reduction of NO [Dissertation]. Beijing: University of Science and Technology Beijing, 2017李強. MnOx/TiO2?ZrO2?CeO2催化劑的低溫SCR脫硝性能和抗毒性研究[學位論文]. 北京: 北京科技大學, 2017 [15] Xu H D, Qiu C T, Zhang Q L, et al. Influence of tungsten oxide on selective catalytic reduction of NOx with NH3 over MnOx?CeO2/ZrO2?TiO2 monolith catalyst. Acta Phys-Chim Sin, 2010, 26(9): 2449 doi: 10.3866/PKU.WHXB20100838徐海迪, 邱春天, 張秋林, 等. WO3對MnOx?CeO2/ZrO2?TiO2整體式催化劑NH3選擇性催化還原NOx性能的影響. 物理化學學報, 2010, 26(9):2449 doi: 10.3866/PKU.WHXB20100838 [16] Zhong B C, Zhou G Y, Wang W H, et al. The effects of Fe substitution on the structure of MnOx catalyst and reaction pathway for low temperature SCR. Acta Sci Circum, 2011, 31(10): 2091鐘標城, 周廣英, 王文輝, 等. Fe摻雜對MnOx催化劑結構性質及低溫SCR反應機制的影響. 環境科學學報, 2011, 31(10):2091 [17] Chen Z, Yang Q, Li H, et al. Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature. J Catalysis, 2010, 276(1): 56 [18] Ettireddy P R, Ettireddy N, Mamedov S, et al. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Appl Catal B Environ, 2007, 76(1-2): 123 [19] Guo J X, Yuan S H, Gong M C, et al. Influence of Ce0.35Zr0.55La0.10O1.95 solid solution on the performance of Pt-Rh three-way catalysts. Acta Phys-Chim Sin, 2007, 23(1): 73郭家秀, 袁書華, 龔茂初, 等. Ce0.35Zr0.55La0.10O1.95對低貴金屬Pt?Rh型三效催化劑性能的影響. 物理化學學報, 2007, 23(1):73 [20] Zieliński J, Zglinicka I, Znak L, et al. Reduction of Fe2O3 with hydrogen. Appl Catal A General, 2010, 381(1-2): 191 [21] Xu H D, Wang Y, Cao Y, et al. Catalytic performance of acidic zirconium-based composite oxides monolithic catalyst on selective catalytic reduction of NOx with NH3. Chem Eng J, 2014, 240: 62 [22] Zhang Q L, Lin T, Li W, et al. Catalytic performance of MnO2?CeO2/Ti0.25Zr0.25Al0.5O1.75 monolith catalyst for low temperature selective catalytic reduction of NO with NH3. Chin J Inorg Chem, 2009, 25(3): 485 doi: 10.3321/j.issn:1001-4861.2009.03.020張秋林, 林濤, 李偉, 等. MnO2?CeO2/Ti0.25Zr0.25Al0.5O1.75整體式催化劑的低溫NH3選擇性催化還原NO性能研究. 無機化學學報, 2009, 25(3):485 doi: 10.3321/j.issn:1001-4861.2009.03.020 [23] Fan Y Z, Cao F H. Thermal decomposition kinetics of ammonium sulfate. J Chem Eng Chin Univ, 2011, 25(2): 341 doi: 10.3969/j.issn.1003-9015.2011.02.028范蕓珠, 曹發海. 硫酸銨熱分解反應動力學研究. 高校化學工程學報, 2011, 25(2):341 doi: 10.3969/j.issn.1003-9015.2011.02.028 [24] Li X S, Yang G S, Wu W Y, et al. Study on roast reaction kinetics and crystal behavior of Ceria-based rare earth polishing powder. J Rare Earths, 2007, 25: 134 [25] Cai X. Study on the Iron Sulfide Oxidation Process and Kinetics under Low Temperatures[Dissertation]. Zhengzhou: Zhengzhou University, 2015蔡鑫. 硫鐵化合物低溫氧化過程及動力學研究[學位論文]. 鄭州: 鄭州大學, 2015 [26] Zhang A H. Kinetics for Thermal Decomposition of Manganese Compounds[Dissertation]. Wuhan: China University of Geosciences, 2010張愛華. 錳化合物的熱分解動力學[學位論文]. 武漢: 中國地質大學, 2010 [27] Sheng Z Y, Hu Y F, Xue J M, et al. A novel co-precipitation method for preparation of Mn-Ce/TiO2 composites for NOx reduction with NH3 at low temperature. Environ Technol, 2012, 33(21): 2421 -