<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

MnOx?FeOy/TiO2?ZrO2?CeO2低溫選擇性催化還原NOz和抗毒性研究

張晴 賀拴玲 張錚 汪莉

張晴, 賀拴玲, 張錚, 汪莉. MnOx?FeOy/TiO2?ZrO2?CeO2低溫選擇性催化還原NOz和抗毒性研究[J]. 工程科學學報, 2020, 42(3): 321-330. doi: 10.13374/j.issn2095-9389.2019.11.05.002
引用本文: 張晴, 賀拴玲, 張錚, 汪莉. MnOx?FeOy/TiO2?ZrO2?CeO2低溫選擇性催化還原NOz和抗毒性研究[J]. 工程科學學報, 2020, 42(3): 321-330. doi: 10.13374/j.issn2095-9389.2019.11.05.002
ZHANG Qing, HE Shuan-ling, ZHANG Zheng, WANG Li. Low-temperature selective catalytic reduction of NOz and anti-toxicity of MnOx?FeOy/TiO2?ZrO2?CeO2[J]. Chinese Journal of Engineering, 2020, 42(3): 321-330. doi: 10.13374/j.issn2095-9389.2019.11.05.002
Citation: ZHANG Qing, HE Shuan-ling, ZHANG Zheng, WANG Li. Low-temperature selective catalytic reduction of NOz and anti-toxicity of MnOx?FeOy/TiO2?ZrO2?CeO2[J]. Chinese Journal of Engineering, 2020, 42(3): 321-330. doi: 10.13374/j.issn2095-9389.2019.11.05.002

MnOx?FeOy/TiO2?ZrO2?CeO2低溫選擇性催化還原NOz和抗毒性研究

doi: 10.13374/j.issn2095-9389.2019.11.05.002
基金項目: 國家自然科學基金資助項目(u1560110)
詳細信息
    通訊作者:

    E-mail: wangli@ces.ustb.edu.cn

  • 中圖分類號: TQ 032

Low-temperature selective catalytic reduction of NOz and anti-toxicity of MnOx?FeOy/TiO2?ZrO2?CeO2

More Information
  • 摘要: 用溶膠凝膠法制備TiO2?ZrO2?CeO2(摩爾比4∶1∶1.25)載體,檸檬酸溶液浸漬法進一步負載MnOx及MnOx?FeOy,進而合成了一種Fe摻雜的新型Mn基復合氧化物催化劑,考察其NH3選擇性催化還原NO性能及抗硫性能。它在含硫氛圍中有良好的低溫選擇性催化還原(SCR)能力和抗中毒能力,Fe的引入促進了Mn與TiO2?ZrO2?CeO2載體之間的相互作用,增加了催化劑表面Lewis酸性位點的數量。根據X射線光譜分析,Mn4+,Ce4+和吸附的氧的含量明顯增加,對提高催化劑的性能非常有利。根據熱重分析,在SO2和H2O同時存在的環境下,Fe的存在使硫酸銨和硫酸鈰的產生量減少,抑制了錳的硫酸化,進一步提高了催化劑的抗毒性。MnOx(12.5%)?FeOy(0.8)/TiO2?ZrO2?CeO2(4∶1∶1.25)催化劑在180 ℃下,同時通入體積分數10% H2O和125×10?6 SO2 240 min,NOz轉化率可保持在75.6%。根據研究成果,新型錳基復合金屬氧化物催化劑為進一步探索催化劑的SCR反應和抗毒機理提供了基礎,促進了SCR工藝的工業應用。

     

  • 圖  1  催化劑的制備過程

    Figure  1.  Preparation of the catalyst

    圖  2  不同Fe/Mn摩爾比的催化劑性能測試圖. (a)活性測試圖;(b)抗硫性測試圖;(c)單獨加水對催化劑M(12.5%)?F(0.8)/TZCO的影響

    Figure  2.  Catalytic performance of the as-synthesized catalyst with different molar ratios of Fe and Mn: (a) activity test of catalysts; (b) sulfur resistance of catalysts; (c) NOz removal rate of M(12.5%)?F(0.8)/TZCO by adding water alone

    圖  3  催化劑抗硫實驗前后的X射線衍射譜圖

    Figure  3.  XRD spectra of the catalyst before and after the sulfur experiment

    a—TZCO (4:1:1.25); b—as-grown catalyst M(12.5%)-F(0.8)/TZCO; c—M(12.5%)?F(0.8)/TZCO after the sulfur-resistance experiment; d—as-grown catalyst M(12.5%)/TZCO; e—using M(12.5%)/TZCO after the sulfur-resistance experiment.

    圖  4  催化劑抗硫實驗前后的掃描電鏡分析譜圖. (a)抗硫前的M(12.5%)?F(0.8)/TZCO;(b)抗硫后的M(12.5%)?F(0.8)/TZCO;(c)抗硫前的M(12.5%)/TZCO;(d)抗硫后的M(12.5%)/TZCO

    Figure  4.  SEM characterizations of the catalysts before and after the sulfur-resistance experiment: (a) as-grown catalyst M(12.5%)?F(0.8)/TZCO; (b) MnOx(12.5%)?F(0.8)/TZCO after the sulfur-resistance experiment; (c) as-grown catalyst M(12.5%)TZCO; (d) M(12.5%)/TZCO after the sulfur-resistance experiment

    圖  5  不同元素的X射線電子能譜擬合曲線. (a)Mn2p;(b)Ce3d;(c)Fe2p;(d)O1s(i和ii分別代表M(12.5%)/TZCO and M(12.5%)?F(0.8)/TZCO)

    Figure  5.  Fitting curves of XPS spectra with different elements: (a) Mn2p; (b) Ce3d; (c) Fe2p; (d) O1s (i and ii curves correspondingly representing the catalysts M(12.5%)/TZCO and M(12.5%)?F(0.8)/TZCO)

    圖  6  不同溫度下催化劑H2程序升溫分析圖譜

    Figure  6.  H2-TPR curves of the catalysts

    圖  7  不同溫度下MnOx(12.5%)?FeOy(0.8)/TiO2?ZrO2?CeO2和MnOx(12.5%)/TiO2?ZrO2?CeO2催化劑的NH3升溫脫附分析圖譜

    Figure  7.  NH3-TPD curves of MnOx(12.5%)?FeOy(0.8)/TiO2?ZrO2?CeO2 and MnOx(12.5%)/TiO2?ZrO2?CeO2 at different temperatures

    圖  8  不同溫度下不同催化劑抗硫反應前后的熱重譜圖. (a)M(12.5%)/TZCO;(b)M(12.5%)?F(0.8)/TZCO;(c)抗硫后M(12.5%)/TZCO及M(12.5%)?F(0.8)/TZCO

    Figure  8.  TG curves of the catalysts: (a) M(12.5%)/ TZCO; (b) M(12.5%)?F(0.8)/TZCO; (c) M(12.5%)/TZCO and M(12.5%)?F(0.8)/TZCO after sulfur resistance

    表  1  MnOx(12.5%)/TiO2?ZrO2?CeO2抗硫實驗前后的質量損失率

    Table  1.   Mass loss rates of MnOx(12.5%)/TiO2?ZrO2?CeO2 before and after the sulfur experiment

    Mass loss stageMass loss ratio/%
    Before sulfur experimentAfter sulfur experimentDifference
    Stage A1.0101.2120.202
    Stage B0.6860.8000.114
    Stage C1.5023.3871.885
    Stage D0.7271.1270.400
    Total mass loss3.9256.5262.601
    下載: 導出CSV

    表  2  MnOx(12.5%)?FeOy(0.8) /TiO2?ZrO2?CeO2抗硫實驗前后的質量損失率

    Table  2.   Mass loss rates of MnOx(12.5%)?FeOy(0.8) /TiO2?ZrO2?CeO2 before and after the sulfur experiment

    Mass loss stageMass loss ratio/%
    Before sulfur experimentAfter sulfur experimentDifference
    Stage A1.3781.5030.125
    Stage B0.6930.9010.208
    Stage C1.1942.6491.455
    Stage D0.8440.8440.000
    Total mass loss4.1095.8971.788
    下載: 導出CSV

    表  3  兩種催化劑抗硫實驗后的質量損失率對比

    Table  3.   Comparison of mass loss of two kinds of catalysts after the sulfur experiment

    Mass loss stageMass loss ratio/%
    M(12.5%)/TZCOM(12.5%)?F(0.8) /TZCODifference
    Stage A0.2020.1250.077
    Stage B0.1140.208?0.094
    Stage C1.8851.4550.430
    Stage D0.4000.0000.400
    Total mass loss2.6011.7880.813
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Gao R H, Zhang D S, Liu X G, et al. Enhanced catalytic performance of V2O5-WO3/Fe2O3/TiO2 microspheres for selective catalytic reduction of NO by NH3. Catal Sci Technol, 2013, 3(1): 191
    [2] Wang L Q, Wang X F, Li H Q, et al. Research on technical method and mechanism of combined desulfurization and denitrification of flue gas from coking furnace with steel slag. J Yanshan Univ, 2016, 40(4): 348 doi: 10.3969/j.issn.1007-791X.2016.04.009

    王麗秋, 王小方, 李會泉, 等. 焦爐煙氣濕法鋼渣聯合脫硫脫硝工藝及機理研究. 燕山大學學報, 2016, 40(4):348 doi: 10.3969/j.issn.1007-791X.2016.04.009
    [3] Liu Z, Zhang S, Junhua L I, et al. Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3. Appl Catal B Environ, 2014, 158-159(3): 11
    [4] Tang X F, Li J H, Sun L, et al. Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3. Appl Catal B Environ, 2010, 99(1-2): 156
    [5] France L J, Yang Q, Li W, et al. Ceria modified FeMnOx?Enhanced performance and sulphur resistance for low-temperature SCR of NOx. Appl Catal B Environ, 2017, 206: 203
    [6] Qiu M Y, Zhan S H, Zhu D D, et al. NH3-SCR performance improvement of mesoporous Sn modified Cr-MnOx catalysts at low temperatures. Catal Today, 2015, 258: 103
    [7] Chang H Z, Li J H, Chen X Y, et al. Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia: Enhancement of activity and remarkable resistance to SO2. Catal Commun, 2012, 27: 54
    [8] Guo Y H, Wei H Y, Zhao G Y, et al. Low temperature catalytic performance of coal-fired flue gas oxidation over Mn?Co?Ce?Ox. Fuel, 2017, 206: 318
    [9] Fang N J, Guo J X, Shu S, et al. Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for NO removal by NH3-SCR. Chem Eng J, 2017, 325: 114
    [10] Wu Z B, Jiang B Q, Liu Y, et al. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method. J Hazard Mater, 2007, 145(3): 488
    [11] Qi G, Yang R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania. Appl Catal B Environ, 2003, 44(3): 217
    [12] Fang C, Zhang D S, Shi L Y, et al. Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3. Catal Sci Technol, 2013, 3(3): 803
    [13] Jin R B, Liu Y, Wang Y, et al. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature. Appl Catal B Environ, 2014, 148-149: 582
    [14] Li Q. Activity and Antitoxic Properties of MnOx/TiO2?ZrO2?CeO2 for the Low-Temperature Selective Catalytic Reduction of NO [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    李強. MnOx/TiO2?ZrO2?CeO2催化劑的低溫SCR脫硝性能和抗毒性研究[學位論文]. 北京: 北京科技大學, 2017
    [15] Xu H D, Qiu C T, Zhang Q L, et al. Influence of tungsten oxide on selective catalytic reduction of NOx with NH3 over MnOx?CeO2/ZrO2?TiO2 monolith catalyst. Acta Phys-Chim Sin, 2010, 26(9): 2449 doi: 10.3866/PKU.WHXB20100838

    徐海迪, 邱春天, 張秋林, 等. WO3對MnOx?CeO2/ZrO2?TiO2整體式催化劑NH3選擇性催化還原NOx性能的影響. 物理化學學報, 2010, 26(9):2449 doi: 10.3866/PKU.WHXB20100838
    [16] Zhong B C, Zhou G Y, Wang W H, et al. The effects of Fe substitution on the structure of MnOx catalyst and reaction pathway for low temperature SCR. Acta Sci Circum, 2011, 31(10): 2091

    鐘標城, 周廣英, 王文輝, 等. Fe摻雜對MnOx催化劑結構性質及低溫SCR反應機制的影響. 環境科學學報, 2011, 31(10):2091
    [17] Chen Z, Yang Q, Li H, et al. Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature. J Catalysis, 2010, 276(1): 56
    [18] Ettireddy P R, Ettireddy N, Mamedov S, et al. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Appl Catal B Environ, 2007, 76(1-2): 123
    [19] Guo J X, Yuan S H, Gong M C, et al. Influence of Ce0.35Zr0.55La0.10O1.95 solid solution on the performance of Pt-Rh three-way catalysts. Acta Phys-Chim Sin, 2007, 23(1): 73

    郭家秀, 袁書華, 龔茂初, 等. Ce0.35Zr0.55La0.10O1.95對低貴金屬Pt?Rh型三效催化劑性能的影響. 物理化學學報, 2007, 23(1):73
    [20] Zieliński J, Zglinicka I, Znak L, et al. Reduction of Fe2O3 with hydrogen. Appl Catal A General, 2010, 381(1-2): 191
    [21] Xu H D, Wang Y, Cao Y, et al. Catalytic performance of acidic zirconium-based composite oxides monolithic catalyst on selective catalytic reduction of NOx with NH3. Chem Eng J, 2014, 240: 62
    [22] Zhang Q L, Lin T, Li W, et al. Catalytic performance of MnO2?CeO2/Ti0.25Zr0.25Al0.5O1.75 monolith catalyst for low temperature selective catalytic reduction of NO with NH3. Chin J Inorg Chem, 2009, 25(3): 485 doi: 10.3321/j.issn:1001-4861.2009.03.020

    張秋林, 林濤, 李偉, 等. MnO2?CeO2/Ti0.25Zr0.25Al0.5O1.75整體式催化劑的低溫NH3選擇性催化還原NO性能研究. 無機化學學報, 2009, 25(3):485 doi: 10.3321/j.issn:1001-4861.2009.03.020
    [23] Fan Y Z, Cao F H. Thermal decomposition kinetics of ammonium sulfate. J Chem Eng Chin Univ, 2011, 25(2): 341 doi: 10.3969/j.issn.1003-9015.2011.02.028

    范蕓珠, 曹發海. 硫酸銨熱分解反應動力學研究. 高校化學工程學報, 2011, 25(2):341 doi: 10.3969/j.issn.1003-9015.2011.02.028
    [24] Li X S, Yang G S, Wu W Y, et al. Study on roast reaction kinetics and crystal behavior of Ceria-based rare earth polishing powder. J Rare Earths, 2007, 25: 134
    [25] Cai X. Study on the Iron Sulfide Oxidation Process and Kinetics under Low Temperatures[Dissertation]. Zhengzhou: Zhengzhou University, 2015

    蔡鑫. 硫鐵化合物低溫氧化過程及動力學研究[學位論文]. 鄭州: 鄭州大學, 2015
    [26] Zhang A H. Kinetics for Thermal Decomposition of Manganese Compounds[Dissertation]. Wuhan: China University of Geosciences, 2010

    張愛華. 錳化合物的熱分解動力學[學位論文]. 武漢: 中國地質大學, 2010
    [27] Sheng Z Y, Hu Y F, Xue J M, et al. A novel co-precipitation method for preparation of Mn-Ce/TiO2 composites for NOx reduction with NH3 at low temperature. Environ Technol, 2012, 33(21): 2421
  • 加載中
圖(8) / 表(3)
計量
  • 文章訪問數:  1221
  • HTML全文瀏覽量:  2065
  • PDF下載量:  28
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-11-05
  • 刊出日期:  2020-03-01

目錄

    /

    返回文章
    返回