<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于絮團弦長測定的全尾砂絮凝沉降行為

阮竹恩 吳愛祥 王建棟 尹升華 王勇

阮竹恩, 吳愛祥, 王建棟, 尹升華, 王勇. 基于絮團弦長測定的全尾砂絮凝沉降行為[J]. 工程科學學報, 2020, 42(8): 980-987. doi: 10.13374/j.issn2095-9389.2019.10.29.004
引用本文: 阮竹恩, 吳愛祥, 王建棟, 尹升華, 王勇. 基于絮團弦長測定的全尾砂絮凝沉降行為[J]. 工程科學學報, 2020, 42(8): 980-987. doi: 10.13374/j.issn2095-9389.2019.10.29.004
RUAN Zhu-en, WU Ai-xiang, WANG Jian-dong, YIN Sheng-hua, WANG Yong. Flocculation and settling behavior of unclassified tailings based on measurement of floc chord length[J]. Chinese Journal of Engineering, 2020, 42(8): 980-987. doi: 10.13374/j.issn2095-9389.2019.10.29.004
Citation: RUAN Zhu-en, WU Ai-xiang, WANG Jian-dong, YIN Sheng-hua, WANG Yong. Flocculation and settling behavior of unclassified tailings based on measurement of floc chord length[J]. Chinese Journal of Engineering, 2020, 42(8): 980-987. doi: 10.13374/j.issn2095-9389.2019.10.29.004

基于絮團弦長測定的全尾砂絮凝沉降行為

doi: 10.13374/j.issn2095-9389.2019.10.29.004
基金項目: 國家自然科學基金重點資助項目(51834001);國家自然科學基金面上資助項目(51674012);國家自然科學基金青年科學基金資助項目(51804015)
詳細信息
    通訊作者:

    E-mail: wuaixiang@126.com

  • 中圖分類號: TD853

Flocculation and settling behavior of unclassified tailings based on measurement of floc chord length

More Information
  • 摘要: 基于全尾砂絮凝過程中絮團弦長的測定,分別研究絮凝和沉降兩個過程:首先以絮團平均弦長為指標研究不同絮凝條件下全尾砂絮凝行為,再以固液界面初始沉降速率為指標分析不同絮凝全尾砂料漿的沉降行為。探明了不同絮凝條件下全尾砂尺寸演化規律,全尾砂均快速絮凝形成絮團,絮團的平均弦長增長達到峰值后隨著剪切時間逐漸下降,直至達到穩定狀態。發現全尾砂絮團的平均弦長與絮凝全尾砂料漿固液界面的初始沉降速率隨著不同的絮凝條件而不斷改變,確定了在本文研究范圍內的最優絮凝條件:Magnafloc 5250絮凝劑,全尾砂料漿固相質量分數10%,絮凝劑單耗10 g·t?1,絮凝劑溶液中絮凝劑質量分數0.025%,剪切速率94.8 s?1。最優條件下絮凝過程中絮團平均弦長峰值為620.63 μm,絮凝結束時絮團平均弦長為399.57 μm,絮凝全尾砂料漿固液界面初始沉降速率為4.61 mm·s?1。初步建立了適用于本文全尾砂的基于絮團平均弦長的固液界面初始沉降速率模型,固液界面初始沉降速率隨著絮團平均弦長的增加而增加,為實際生產中控制全尾砂絮凝沉降參數以及設備結構優化、提高全尾砂料漿的絮凝沉降效率提供參考。

     

  • 圖  1  全尾砂粒徑分布

    Figure  1.  Grain size distribution of unclassified tailings

    圖  2  絮凝實驗設備

    Figure  2.  Flocculation experiment equipment

    圖  3  FBRM探頭結構示意和弦長測試原理

    Figure  3.  Schematic of FBRM probe structure and chord length measuring principle

    圖  4  不同絮凝劑種類條件下全尾砂絮凝行為

    Figure  4.  Flocculation behavior under different flocculants

    圖  5  Magnafloc 5250作用下全尾砂絮團弦長分布(CD為累積分布,DD為微分分布)

    Figure  5.  Chord length distribution of unclassified tailings floc using Magnafloc 5250 (CD and DD are abbreviations for cumulative distribution and differential distribution, respectively)

    圖  6  不同絮凝劑種類條件下絮凝全尾砂料漿沉降曲線

    Figure  6.  Settling curve of flocculated tailings slurry under different flocculants

    圖  7  不同固相質量分數條件下全尾砂絮凝行為

    Figure  7.  Flocculation behavior under different solid mass fractions

    圖  8  不同固相質量分數條件下絮凝全尾砂料漿沉降曲線

    Figure  8.  Settling curves of flocculated tailings slurry under different solid mass fractions

    圖  9  不同絮凝劑單耗(a)與絮凝劑質量分數(b)條件下全尾砂絮凝行為

    Figure  9.  Flocculation behavior under different flocculant dosages (a) and flocculant mass fractions (b)

    圖  10  不同絮凝劑單耗(a)與絮凝劑質量分數(b)條件下絮凝全尾砂料漿沉降曲線

    Figure  10.  Settling curves of flocculated tailings slurry under different flocculant dosages (a) and flocculant mass fractions (b)

    圖  11  不同剪切速率條件下全尾砂絮凝行為

    Figure  11.  Flocculation behavior under different shear rates

    圖  12  不同剪切速率條件下絮凝全尾砂料漿沉降曲線

    Figure  12.  Settling curves of flocculated tailings slurry under different shear rates

    圖  13  固液界面初始沉降速率與絮團弦長的關系

    Figure  13.  Relationship between suspension–supernate interface initial settling rate and floc chord length

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. <italic>Chin J Eng</italic>, 2018, 40(5): 517

    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
    [2] Qi C C, Fourie A. Cemented paste backfill for mineral tailings management: Review and future perspectives. <italic>Miner Eng</italic>, 2019, 144: 106025 doi: 10.1016/j.mineng.2019.106025
    [3] Tan C K, Setiawan R, Bao J, et al. Studies on parameter estimation and model predictive control of paste thickeners. <italic>J Process Control</italic>, 2015, 28: 1 doi: 10.1016/j.jprocont.2015.02.002
    [4] Arjmand R, Massinaei M, Behnamfard A. Improving flocculation and dewatering performance of iron tailings thickeners. <italic>J Water Process Eng</italic>, 2019, 31: 100873 doi: 10.1016/j.jwpe.2019.100873
    [5] Jiao H Z, Wang S F, Yang Y X, et al. Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill. <italic>J Clean Prod</italic>, 2020, 245: 118882 doi: 10.1016/j.jclepro.2019.118882
    [6] Tanguay M, Fawell P, Adkins S. Modelling the impact of two different flocculants on the performance of a thickener feedwell. <italic>Appl Math Model</italic>, 2014, 38(17-18): 4262 doi: 10.1016/j.apm.2014.04.047
    [7] Zhang Q L, Wang S, Wang X M. Influence rules of unit consumptions of flocculants on interface sedimentation velocity of unclassified tailings slurry. <italic>Chin J Nonferrous Met</italic>, 2017, 27(2): 318

    張欽禮, 王石, 王新民. 絮凝劑單耗對全尾砂漿渾液面沉速的影響規律. 中國有色金屬學報, 2017, 27(2):318
    [8] Wang Y, Wu A X, Wang H J, et al. Influence mechanism of flocculant dosage on tailings thickening. <italic>J Univ Sci Technol Beijing</italic>, 2013, 35(11): 1419

    王勇, 吳愛祥, 王洪江, 等. 絮凝劑用量對尾礦濃密的影響機理. 北京科技大學學報, 2013, 35(11):1419
    [9] Jiao H Z, Wang H J, Wu A X, et al. Rule and mechanism of flocculation sedimentation of unclassified tailings. <italic>J Univ Sci Technol Beijing</italic>, 2010, 32(6): 702

    焦華喆, 王洪江, 吳愛祥, 等. 全尾砂絮凝沉降規律及其機理. 北京科技大學學報, 2010, 32(6):702
    [10] Wu A X, Zhou J, Yin S H, et al. Influence factors on flocculation sedimentation of unclassified tailings. <italic>Chin J Nonferrous Met</italic>, 2016, 26(2): 439

    吳愛祥, 周靚, 尹升華, 等. 全尾砂絮凝沉降的影響因素. 中國有色金屬學報, 2016, 26(2):439
    [11] Nguyen T P, Hankins N P, Hilal N. Effect of chemical composition on the flocculation dynamics of latex-based synthetic activated sludge. <italic>J Hazard Mater</italic>, 2007, 139(2): 265 doi: 10.1016/j.jhazmat.2006.06.025
    [12] Botha L, Soares J B P. The influence of tailings composition on flocculation. <italic>Can J Chem Eng</italic>, 2015, 93(9): 1514 doi: 10.1002/cjce.22241
    [13] Li S L, Gao L H, Cao Y J, et al. Effect of pH on the flocculation behaviors of kaolin using a pH-sensitive copolymer. <italic>Water Sci Technol</italic>, 2016, 74(3): 729 doi: 10.2166/wst.2016.266
    [14] Konduri M K R, Fatehi P. Influence of pH and ionic strength on flocculation of clay suspensions with cationic xylan copolymer. <italic>Colloid Surf A</italic>, 2017, 530: 20 doi: 10.1016/j.colsurfa.2017.07.045
    [15] Carissimi E, Rubio J. Polymer-bridging flocculation performance using turbulent pipe flow. <italic>Miner Eng</italic>, 2015, 70: 20 doi: 10.1016/j.mineng.2014.08.019
    [16] Wu A X, Ruan Z E, Wang J D, et al. Optimizing the flocculation behavior of ultrafine tailings by ultra-flocculation. <italic>Chin J Eng</italic>, 2019, 41(8): 981

    吳愛祥, 阮竹恩, 王建棟, 等. 基于超級絮凝的超細尾砂絮凝行為優化. 工程科學學報, 2019, 41(8):981
    [17] Nguyen T V, Farrow J B, Smith J, et al. Design and development of a novel thickener feedwell using computational fluid dynamics. <italic>J S Afr Inst Min Metall</italic>, 2012, 112(11): 939
    [18] Gheshlaghi M E, Goharrizi A S, Shahrivar A A, et al. Modeling industrial thickener using computational fluid dynamics (CFD), a case study: Tailing thickener in the Sarcheshmeh copper mine. <italic>Int J Min Sci Technol</italic>, 2013, 23(6): 885 doi: 10.1016/j.ijmst.2013.11.002
    [19] Ruan Z E, Li C P, Shi C. Numerical simulation of flocculation and settling behavior of whole-tailings particles in deep-cone thickener. <italic>J Cent South Univ</italic>, 2016, 23(3): 740 doi: 10.1007/s11771-016-3119-8
    [20] Liang L, Peng Y L, Tan J K, et al. A review of the modern characterization techniques for flocs in mineral processing. <italic>Miner Eng</italic>, 2015, 84: 130 doi: 10.1016/j.mineng.2015.10.011
    [21] Blanco A, Fuente E, Negro C, et al. Flocculation monitoring: focused beam reflectance measurement as a measurement tool. <italic>Can J Chem Eng</italic>, 2002, 80(4): 1
    [22] Senaputra A, Jones F, Fawell P D, et al. Focused beam reflectance measurement for monitoring the extent and efficiency of flocculation in mineral systems. <italic>AIChE J</italic>, 2014, 60(1): 251 doi: 10.1002/aic.14256
    [23] Heath A R, Fawell P D, Bahri P A, et al. Estimating average particle size by focused beam reflectance measurement (FBRM). <italic>Part Part Syst Charact</italic>, 2002, 19(2): 84 doi: 10.1002/1521-4117(200205)19:2<84::AID-PPSC84>3.0.CO;2-1
    [24] Spicer P T, Keller W, Pratsinis S E. The effect of impeller type on floc size and structure during shear-induced flocculation. <italic>J Colloid Interface Sci</italic>, 1996, 184(1): 112 doi: 10.1006/jcis.1996.0601
    [25] Mietta F, Chassagne C, Winterwerp J C. Shear-induced flocculation of a suspension of kaolinite as function of pH and salt concentration. <italic>J Colloid Interface Sci</italic>, 2009, 336(1): 134 doi: 10.1016/j.jcis.2009.03.044
    [26] Hasan A, Fatehi P. Cationic kraft lignin-acrylamide as a flocculant for clay suspensions: 1) molecular weight effect. <italic>Sep Purif Technol</italic>, 2018, 207: 213 doi: 10.1016/j.seppur.2018.06.047
    [27] Dwari R K, Angadi S I, Tripathy S K. Studies on flocculation characteristics of chromite’s ore process tailing: Effect of flocculants ionicity and molecular mass. <italic>Colloid Surf A</italic>, 2018, 537: 467 doi: 10.1016/j.colsurfa.2017.10.069
    [28] Kinoshita T, Nakaishi K, Kuroda Y. Determination of kaolinite floc size and structure using interface settling velocity. <italic>Appl Clay Sci</italic>, 2017, 148: 11 doi: 10.1016/j.clay.2017.07.024
    [29] Zhang Y Q, Gao W J, Fatehi P. Structure and settling performance of aluminum oxide and poly (acrylic acid) flocs in suspension systems. <italic>Sep Purif Technol</italic>, 2019, 215: 115 doi: 10.1016/j.seppur.2019.01.012
  • 加載中
圖(13)
計量
  • 文章訪問數:  1748
  • HTML全文瀏覽量:  1216
  • PDF下載量:  57
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-10-29
  • 刊出日期:  2020-09-11

目錄

    /

    返回文章
    返回