<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

全尾砂膏體流變學研究現狀與展望(下):流變測量與展望

吳愛祥 李紅 程海勇 王貽明 李翠平 阮竹恩

吳愛祥, 李紅, 程海勇, 王貽明, 李翠平, 阮竹恩. 全尾砂膏體流變學研究現狀與展望(下):流變測量與展望[J]. 工程科學學報, 2021, 43(4): 451-459. doi: 10.13374/j.issn2095-9389.2019.10.29.002
引用本文: 吳愛祥, 李紅, 程海勇, 王貽明, 李翠平, 阮竹恩. 全尾砂膏體流變學研究現狀與展望(下):流變測量與展望[J]. 工程科學學報, 2021, 43(4): 451-459. doi: 10.13374/j.issn2095-9389.2019.10.29.002
WU Ai-xiang, LI Hong, CHENG Hai-yong, WANG Yi-ming, LI Cui-ping, RUAN Zhu-en. Status and prospects of research on the rheology of paste backfill using unclassified tailings (Part 2): rheological measurement and prospects[J]. Chinese Journal of Engineering, 2021, 43(4): 451-459. doi: 10.13374/j.issn2095-9389.2019.10.29.002
Citation: WU Ai-xiang, LI Hong, CHENG Hai-yong, WANG Yi-ming, LI Cui-ping, RUAN Zhu-en. Status and prospects of research on the rheology of paste backfill using unclassified tailings (Part 2): rheological measurement and prospects[J]. Chinese Journal of Engineering, 2021, 43(4): 451-459. doi: 10.13374/j.issn2095-9389.2019.10.29.002

全尾砂膏體流變學研究現狀與展望(下):流變測量與展望

doi: 10.13374/j.issn2095-9389.2019.10.29.002
基金項目: 中國博士后科學基金資助項目(2020T130272,2019M663576);國家自然科學基金資助項目(52074137,51834001);金屬礦山高效開采與安全教育部重點實驗室開放基金資助項目(ustbmslab201801)
詳細信息
    通訊作者:

    E-mail:haiker2007@163.com

  • 中圖分類號: TD853

Status and prospects of research on the rheology of paste backfill using unclassified tailings (Part 2): rheological measurement and prospects

More Information
  • 摘要: 膏體充填是推動金屬礦綠色開采發展的關鍵技術,并可為資源的深部開采提供安全、綠色、高效的技術支撐。全尾砂膏體流變學是膏體充填技術的基礎理論,本文在綜述膏體流變概念、特性與模型的基礎上,進一步對流變測量技術現狀進行了系統梳理,概述了現階段常用的漿式旋轉流變儀、坍落筒、L管、傾斜管及環管法進行流變測量的原理及應用,針對膏體這一屈服型非牛頓流體,重點分析了屈服應力的測量,并對以上方法的適用性進行了綜合論述。流變測量深刻地影響著膏體流變理論及膏體充填工藝的發展,為此,對測量技術的關鍵問題進行了探討,指出構建膏體流變測量標準及加強流變測量技術與充填工藝的結合是重點,并對膏體流變學研究的發展趨勢進行了展望。

     

  • 圖  1  槳式旋轉流變儀及測試原理

    Figure  1.  Vane method and its principle

    圖  2  典型的膏體剪切應力–時間曲線

    Figure  2.  A typical shear stress–time curve of paste

    圖  3  蠕變恢復試驗測得的典型應變–時間曲線

    Figure  3.  Typical strain –time curves obtained by the creep recovery method

    圖  4  流變數據擬合法測量屈服應力

    Figure  4.  Yield stress determined by extrapolation

    圖  5  坍落度測量原理

    Figure  5.  Theoretical analysis of the slump test

    圖  6  L管流變實驗裝置示意圖

    Figure  6.  Schematic of the L-shaped tube

    圖  7  傾斜管流變實驗裝置圖

    Figure  7.  Schematic of the inclined pipe

    圖  8  環管實驗裝置圖

    Figure  8.  Schematic of the loop facility

    圖  9  濃密機底流實時在線流變監測[49]

    Figure  9.  Online rheological monitoring of a thickener underflow pump in real time[49]

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wu A X, Wang Y, Wang H J. Status and prospects of the paste backfill technology. Met Mine, 2016, 45(7): 1 doi: 10.3969/j.issn.1001-1250.2016.07.001

    吳愛祥, 王勇, 王洪江. 膏體充填技術現狀及趨勢. 金屬礦山, 2016, 45(7):1 doi: 10.3969/j.issn.1001-1250.2016.07.001
    [2] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417

    蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417
    [3] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
    [4] Cheng H Y, Wu S C, Li H, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr Build Mater, 2020, 231: 117117 doi: 10.1016/j.conbuildmat.2019.117117
    [5] Jiao H Z, Wang S F, Yang Y X, et al. Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill. J Clean Prod, 2020, 245: 118882 doi: 10.1016/j.jclepro.2019.118882
    [6] Chen J Z. Measurement of the rheological properties of fresh concrete using the rotating fan type rheometer. J Shanghai Inst Build Mater, 1992, 5(3): 164

    陳健中. 用旋轉葉片式流變儀測定新拌混凝土的流變性能. 上海建材學院學報, 1992, 5(3):164
    [7] Dzuy N Q, Boger D V. Direct yield stress measurement with the vane method. J Rheol, 1985, 29(3): 335 doi: 10.1122/1.549794
    [8] Assaad J J, Harb J, Maalouf Y. Effect of vane configuration on yield stress measurements of cement pastes. J Non-Newtonian Fluid Mech, 2016, 230: 31 doi: 10.1016/j.jnnfm.2016.01.002
    [9] Nguyen Q D, Boger D V. Characterization of yield stress fluids with concentric cylinder viscometers. Rheol Acta, 1987, 26(6): 508 doi: 10.1007/BF01333734
    [10] Barnes H A. A brief history of the yield stress. Appl Rheol, 1999, 9(6): 262 doi: 10.1515/arh-2009-0018
    [11] Barnes H A. The yield stress—a review or ‘παντα ρει’—everything flows? J Non-Newtonian Fluid Mech, 1999, 81(1-2): 133 doi: 10.1016/S0377-0257(98)00094-9
    [12] Cheng H Y, Wu S C, Zhang X Q, et al. Effect of particle gradation characteristics on yield stress of cemented paste backfill. Int J Miner Metall Mater, 2020, 27(1): 10 doi: 10.1007/s12613-019-1865-y
    [13] Liddel P V, Boger D V. Yield stress measurements with the vane. J Non-Newtonian Fluid Mech, 1996, 63(2-3): 235 doi: 10.1016/0377-0257(95)01421-7
    [14] Barnes H A, Carnali J O. The vane-in-cup as a novel rheometer geometry for shear thinning and thixotropic materials. J Rheol, 1990, 34(6): 841 doi: 10.1122/1.550103
    [15] Wu A X, Jiao H Z, Wang H J, et al. Yield stress measurements and optimization of Paste tailings. J Central S Univ Sci Technol, 2013, 44(8): 3370

    吳愛祥, 焦華喆, 王洪江, 等. 膏體尾礦屈服應力檢測及其優化. 中南大學學報:自然科學版, 2013, 44(8):3370
    [16] Nguyen Q D, Boger D V. Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech, 1992, 24(1): 47 doi: 10.1146/annurev.fl.24.010192.000403
    [17] Petrellis N C, Flumerfelt R W. Rheological behavior of shear degradable oils: kinetic and equilibrium properties. Can J Chem Eng, 1973, 51(3): 291 doi: 10.1002/cjce.5450510305
    [18] Van den Tempel M. Mechanical properties of plastic-disperse systems at very small deformations. J Colloid Sci, 1961, 16(3): 284 doi: 10.1016/0095-8522(61)90005-8
    [19] Zosel A. Rheological properties of disperse systems at low shear stresses. Rheol Acta, 1982, 21(1): 72 doi: 10.1007/BF01520707
    [20] Cheng D C H. Yield stress: a time-dependent property and how to measure it. Rheol Acta, 1986, 25(5): 542 doi: 10.1007/BF01774406
    [21] Dzuy N Q, Boger D V. Yield stress measurement for concentrated suspensions. J Rheol, 1983, 27(4): 321 doi: 10.1122/1.549709
    [22] De Kee D, Mohan P, Soong D S. Yield stress determination of styrene-butadiene-styrene triblock copolymer solutions. J Macromol Sci Part B Phys, 1986, 25(1-2): 153 doi: 10.1080/00222348608248035
    [23] Heywood N I, Cheng D C H. Comparison of methods for predicting head loss in turbulent pipe flow of non-Newtonian fluids. Trans Inst Meas Control, 1984, 6(1): 33 doi: 10.1177/014233128400600105
    [24] Wildemuth C R, Williams M C. A new interpretation of viscosity and yield stress in dense slurries: coal and other irregular particles. Rheol Acta, 1985, 24(1): 75 doi: 10.1007/BF01329266
    [25] Saak A W, Jennings H M, Shah S P. A generalized approach for the determination of yield stress by slump and slump flow. Cem Concr Res, 2004, 34(3): 363 doi: 10.1016/j.cemconres.2003.08.005
    [26] Clayton S, Grice T G, Boger D V. Analysis of the slump test for on-site yield stress measurement of mineral suspensions. Int J Miner Process, 2003, 70(1-4): 3 doi: 10.1016/S0301-7516(02)00148-5
    [27] Roussel N. Three-dimensional numerical simulations of slump tests. Annu Trans Nordic Rheol Soc, 2004, 12: 55
    [28] Roussel N, Coussot P. “Fifty-cent rheometer” for yield stress measurements: from slump to spreading flow. J Rheol, 2005, 49(3): 705 doi: 10.1122/1.1879041
    [29] Roussel N. Correlation between yield stress and slump: comparison between numerical simulations and concrete rheometers results. Mater Struct, 2006, 39(4): 501
    [30] Wallevik J E. Relationship between the Bingham parameters and slump. Cem Concr Res, 2006, 36(7): 1214 doi: 10.1016/j.cemconres.2006.03.001
    [31] Murata J. Flow and deformation of fresh concrete. Mater Constr, 1984, 17(2): 117 doi: 10.1007/BF02473663
    [32] Christensen G. Modelling the Flow of Fresh Concrete: the Slump Test[Dissertation]. Princeton: Princeton University, 1991
    [33] Rajani B, Morgenstern N. On the yield stress of geotechnical materials from the slump test. Can Geotech J, 1991, 28(3): 457 doi: 10.1139/t91-056
    [34] Schowalter W R, Christensen G. Toward a rationalization of the slump test for fresh concrete: comparisons of calculations and experiments. J Rheol, 1998, 42(4): 865 doi: 10.1122/1.550905
    [35] Ferraris C F, de Larrard F. Modified slump test to measure rheological parameters of fresh concrete. Cem Concr Aggregates, 1998, 20(2): 241 doi: 10.1520/CCA10417J
    [36] Chandler J L. The stacking and solar drying process for disposal of bauxite tailings in Jamaica//Proceedings of the International Conference on Bauxite Tailings. Kingston, 1986: 101
    [37] Pashias N, Boger D V, Summers J, et al. A fifty cent rheometer for yield stress measurement. J Rheol, 1996, 40(6): 1179 doi: 10.1122/1.550780
    [38] Jewell RJ, Fourie A B. Paste and Thickened Tailings – A Guide. 3rd Ed. Perth: Australian Centre for Geomechanics, 2015
    [39] Gawu S K Y, Fourie A B. Assessment of the modified slump test as a measure of the yield stress of high-density thickened tailings. Can Geotech J, 2004, 41(1): 39 doi: 10.1139/t03-071
    [40] Lan W T, Wu A X, Wang Y M. Study on gravity-flow filling times line of paste based on industrial-grade L-pipe. Ind Miner Process, 2019, 48(3): 9

    蘭文濤, 吳愛祥, 王貽明. 基于工業級L管的膏體自流充填倍線研究. 化工礦物與加工, 2019, 48(3):9
    [41] Bian J W, Zhang Q L, Wang H. Pipeline hydraulic gradient model of paste-like based on L-pipe experiments. J China Univ Min Technol, 2019, 48(1): 23

    卞繼偉, 張欽禮, 王浩. 基于L管試驗的似膏體管流水力坡度模型. 中國礦業大學學報, 2019, 48(1):23
    [42] Xu Y H, Xu X Q. Rheological behavior of high-density backfill and reasonable determination of the parameters for its gravity-flow transport. Min Metall, 2004, 13(3): 16 doi: 10.3969/j.issn.1005-7854.2004.03.005

    許毓海, 許新啟. 高濃度(膏體)充填流變特性及自流輸送參數的合理確定. 礦冶, 2004, 13(3):16 doi: 10.3969/j.issn.1005-7854.2004.03.005
    [43] Li G C, Wang H J, Wu A X, et al. Gravity transport law of paste based on inclined pipe experiment. Chin J Nonferrous Met, 2014, 24(12): 3162

    李公成, 王洪江, 吳愛祥, 等. 基于傾斜管實驗的膏體自流輸送規律. 中國有色金屬學報, 2014, 24(12):3162
    [44] Deng D Q, Wang L, Zhou Y, et al. Experimental analysis on the transportation simulation of filling slurry in L-shape pipeline. J Guangxi Univ Nat Sci Ed, 2012, 37(4): 837

    鄧代強, 王莉, 周喻, 等. 充填料漿L型管道自流輸送模擬試驗分析. 廣西大學學報:自然科學版, 2012, 37(4):837
    [45] Chen Q R, Wang H J, Wu A X, et al. Experimental study on hydraulic gradient of paste slurry by L-pipe. J Wuhan Univ Technol, 2011, 33(1): 108 doi: 10.3963/j.issn.1671-4431.2011.01.024

    陳琴瑞, 王洪江, 吳愛祥, 等. 用L管測定膏體料漿水力坡度試驗研究. 武漢理工大學學報, 2011, 33(1):108 doi: 10.3963/j.issn.1671-4431.2011.01.024
    [46] Li G Z, Yu R C. Study of implementing computer simulation of filling slurry round-pipe test. Gold, 2008, 29(4): 21 doi: 10.3969/j.issn.1001-1277.2008.04.006

    李國政, 于潤滄. 充填料漿環管試驗計算機仿真應用的研究. 黃金, 2008, 29(4):21 doi: 10.3969/j.issn.1001-1277.2008.04.006
    [47] Assaad J J, Harb J, Maalouf Y. Measurement of yield stress of cement pastes using the direct shear test. J Non-Newtonian Fluid Mech, 2014, 214: 18 doi: 10.1016/j.jnnfm.2014.10.009
    [48] American Society for Testing and Materials. ASTM C 143/C 143M Standard Test Method for Slump of Hydraulic-Cement Concrete. Philadelphia: American Society for Testing and Materials, 2002
    [49] Chryss A G, M?nch A, Constanti-Carey K. Online rheology monitoring of a thickener underflow//Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings. Perth, 2019: 495
    [50] Chryss A, Fourie A B, Monch A, et al. Towards an integrated approach to tailings management//Proceedings of the 15th International Seminar on Paste and Thickened Tailings. Perth, 2012: 3
    [51] Wu S C, Han L Q, Cheng Z Q, et al. Study on the limit equilibrium slice method considering characteristics of inter-slice normal forces distribution: the improved Spencer method. Environ Earth Sci, 2019, 78(20): 611 doi: 10.1007/s12665-019-8621-5
    [52] Cheng H Y, Wu S C, Zhang X Q, et al. A novel prediction model of strength of paste backfill prepared from waste-unclassified tailings. Adv Mater Sci Eng, 2019, 2019: 3574190
  • 加載中
圖(9)
計量
  • 文章訪問數:  2067
  • HTML全文瀏覽量:  1101
  • PDF下載量:  164
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-10-29
  • 刊出日期:  2021-04-26

目錄

    /

    返回文章
    返回