[1] |
Wu A X, Wang Y, Wang H J. Status and prospects of the paste backfill technology. Met Mine, 2016, 45(7): 1 doi: 10.3969/j.issn.1001-1250.2016.07.001吳愛祥, 王勇, 王洪江. 膏體充填技術現狀及趨勢. 金屬礦山, 2016, 45(7):1 doi: 10.3969/j.issn.1001-1250.2016.07.001
|
[2] |
Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417
|
[3] |
Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
|
[4] |
Cheng H Y, Wu S C, Li H, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr Build Mater, 2020, 231: 117117 doi: 10.1016/j.conbuildmat.2019.117117
|
[5] |
Jiao H Z, Wang S F, Yang Y X, et al. Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill. J Clean Prod, 2020, 245: 118882 doi: 10.1016/j.jclepro.2019.118882
|
[6] |
Chen J Z. Measurement of the rheological properties of fresh concrete using the rotating fan type rheometer. J Shanghai Inst Build Mater, 1992, 5(3): 164陳健中. 用旋轉葉片式流變儀測定新拌混凝土的流變性能. 上海建材學院學報, 1992, 5(3):164
|
[7] |
Dzuy N Q, Boger D V. Direct yield stress measurement with the vane method. J Rheol, 1985, 29(3): 335 doi: 10.1122/1.549794
|
[8] |
Assaad J J, Harb J, Maalouf Y. Effect of vane configuration on yield stress measurements of cement pastes. J Non-Newtonian Fluid Mech, 2016, 230: 31 doi: 10.1016/j.jnnfm.2016.01.002
|
[9] |
Nguyen Q D, Boger D V. Characterization of yield stress fluids with concentric cylinder viscometers. Rheol Acta, 1987, 26(6): 508 doi: 10.1007/BF01333734
|
[10] |
Barnes H A. A brief history of the yield stress. Appl Rheol, 1999, 9(6): 262 doi: 10.1515/arh-2009-0018
|
[11] |
Barnes H A. The yield stress—a review or ‘παντα ρει’—everything flows? J Non-Newtonian Fluid Mech, 1999, 81(1-2): 133 doi: 10.1016/S0377-0257(98)00094-9
|
[12] |
Cheng H Y, Wu S C, Zhang X Q, et al. Effect of particle gradation characteristics on yield stress of cemented paste backfill. Int J Miner Metall Mater, 2020, 27(1): 10 doi: 10.1007/s12613-019-1865-y
|
[13] |
Liddel P V, Boger D V. Yield stress measurements with the vane. J Non-Newtonian Fluid Mech, 1996, 63(2-3): 235 doi: 10.1016/0377-0257(95)01421-7
|
[14] |
Barnes H A, Carnali J O. The vane-in-cup as a novel rheometer geometry for shear thinning and thixotropic materials. J Rheol, 1990, 34(6): 841 doi: 10.1122/1.550103
|
[15] |
Wu A X, Jiao H Z, Wang H J, et al. Yield stress measurements and optimization of Paste tailings. J Central S Univ Sci Technol, 2013, 44(8): 3370吳愛祥, 焦華喆, 王洪江, 等. 膏體尾礦屈服應力檢測及其優化. 中南大學學報:自然科學版, 2013, 44(8):3370
|
[16] |
Nguyen Q D, Boger D V. Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech, 1992, 24(1): 47 doi: 10.1146/annurev.fl.24.010192.000403
|
[17] |
Petrellis N C, Flumerfelt R W. Rheological behavior of shear degradable oils: kinetic and equilibrium properties. Can J Chem Eng, 1973, 51(3): 291 doi: 10.1002/cjce.5450510305
|
[18] |
Van den Tempel M. Mechanical properties of plastic-disperse systems at very small deformations. J Colloid Sci, 1961, 16(3): 284 doi: 10.1016/0095-8522(61)90005-8
|
[19] |
Zosel A. Rheological properties of disperse systems at low shear stresses. Rheol Acta, 1982, 21(1): 72 doi: 10.1007/BF01520707
|
[20] |
Cheng D C H. Yield stress: a time-dependent property and how to measure it. Rheol Acta, 1986, 25(5): 542 doi: 10.1007/BF01774406
|
[21] |
Dzuy N Q, Boger D V. Yield stress measurement for concentrated suspensions. J Rheol, 1983, 27(4): 321 doi: 10.1122/1.549709
|
[22] |
De Kee D, Mohan P, Soong D S. Yield stress determination of styrene-butadiene-styrene triblock copolymer solutions. J Macromol Sci Part B Phys, 1986, 25(1-2): 153 doi: 10.1080/00222348608248035
|
[23] |
Heywood N I, Cheng D C H. Comparison of methods for predicting head loss in turbulent pipe flow of non-Newtonian fluids. Trans Inst Meas Control, 1984, 6(1): 33 doi: 10.1177/014233128400600105
|
[24] |
Wildemuth C R, Williams M C. A new interpretation of viscosity and yield stress in dense slurries: coal and other irregular particles. Rheol Acta, 1985, 24(1): 75 doi: 10.1007/BF01329266
|
[25] |
Saak A W, Jennings H M, Shah S P. A generalized approach for the determination of yield stress by slump and slump flow. Cem Concr Res, 2004, 34(3): 363 doi: 10.1016/j.cemconres.2003.08.005
|
[26] |
Clayton S, Grice T G, Boger D V. Analysis of the slump test for on-site yield stress measurement of mineral suspensions. Int J Miner Process, 2003, 70(1-4): 3 doi: 10.1016/S0301-7516(02)00148-5
|
[27] |
Roussel N. Three-dimensional numerical simulations of slump tests. Annu Trans Nordic Rheol Soc, 2004, 12: 55
|
[28] |
Roussel N, Coussot P. “Fifty-cent rheometer” for yield stress measurements: from slump to spreading flow. J Rheol, 2005, 49(3): 705 doi: 10.1122/1.1879041
|
[29] |
Roussel N. Correlation between yield stress and slump: comparison between numerical simulations and concrete rheometers results. Mater Struct, 2006, 39(4): 501
|
[30] |
Wallevik J E. Relationship between the Bingham parameters and slump. Cem Concr Res, 2006, 36(7): 1214 doi: 10.1016/j.cemconres.2006.03.001
|
[31] |
Murata J. Flow and deformation of fresh concrete. Mater Constr, 1984, 17(2): 117 doi: 10.1007/BF02473663
|
[32] |
Christensen G. Modelling the Flow of Fresh Concrete: the Slump Test[Dissertation]. Princeton: Princeton University, 1991
|
[33] |
Rajani B, Morgenstern N. On the yield stress of geotechnical materials from the slump test. Can Geotech J, 1991, 28(3): 457 doi: 10.1139/t91-056
|
[34] |
Schowalter W R, Christensen G. Toward a rationalization of the slump test for fresh concrete: comparisons of calculations and experiments. J Rheol, 1998, 42(4): 865 doi: 10.1122/1.550905
|
[35] |
Ferraris C F, de Larrard F. Modified slump test to measure rheological parameters of fresh concrete. Cem Concr Aggregates, 1998, 20(2): 241 doi: 10.1520/CCA10417J
|
[36] |
Chandler J L. The stacking and solar drying process for disposal of bauxite tailings in Jamaica//Proceedings of the International Conference on Bauxite Tailings. Kingston, 1986: 101
|
[37] |
Pashias N, Boger D V, Summers J, et al. A fifty cent rheometer for yield stress measurement. J Rheol, 1996, 40(6): 1179 doi: 10.1122/1.550780
|
[38] |
Jewell RJ, Fourie A B. Paste and Thickened Tailings – A Guide. 3rd Ed. Perth: Australian Centre for Geomechanics, 2015
|
[39] |
Gawu S K Y, Fourie A B. Assessment of the modified slump test as a measure of the yield stress of high-density thickened tailings. Can Geotech J, 2004, 41(1): 39 doi: 10.1139/t03-071
|
[40] |
Lan W T, Wu A X, Wang Y M. Study on gravity-flow filling times line of paste based on industrial-grade L-pipe. Ind Miner Process, 2019, 48(3): 9蘭文濤, 吳愛祥, 王貽明. 基于工業級L管的膏體自流充填倍線研究. 化工礦物與加工, 2019, 48(3):9
|
[41] |
Bian J W, Zhang Q L, Wang H. Pipeline hydraulic gradient model of paste-like based on L-pipe experiments. J China Univ Min Technol, 2019, 48(1): 23卞繼偉, 張欽禮, 王浩. 基于L管試驗的似膏體管流水力坡度模型. 中國礦業大學學報, 2019, 48(1):23
|
[42] |
Xu Y H, Xu X Q. Rheological behavior of high-density backfill and reasonable determination of the parameters for its gravity-flow transport. Min Metall, 2004, 13(3): 16 doi: 10.3969/j.issn.1005-7854.2004.03.005許毓海, 許新啟. 高濃度(膏體)充填流變特性及自流輸送參數的合理確定. 礦冶, 2004, 13(3):16 doi: 10.3969/j.issn.1005-7854.2004.03.005
|
[43] |
Li G C, Wang H J, Wu A X, et al. Gravity transport law of paste based on inclined pipe experiment. Chin J Nonferrous Met, 2014, 24(12): 3162李公成, 王洪江, 吳愛祥, 等. 基于傾斜管實驗的膏體自流輸送規律. 中國有色金屬學報, 2014, 24(12):3162
|
[44] |
Deng D Q, Wang L, Zhou Y, et al. Experimental analysis on the transportation simulation of filling slurry in L-shape pipeline. J Guangxi Univ Nat Sci Ed, 2012, 37(4): 837鄧代強, 王莉, 周喻, 等. 充填料漿L型管道自流輸送模擬試驗分析. 廣西大學學報:自然科學版, 2012, 37(4):837
|
[45] |
Chen Q R, Wang H J, Wu A X, et al. Experimental study on hydraulic gradient of paste slurry by L-pipe. J Wuhan Univ Technol, 2011, 33(1): 108 doi: 10.3963/j.issn.1671-4431.2011.01.024陳琴瑞, 王洪江, 吳愛祥, 等. 用L管測定膏體料漿水力坡度試驗研究. 武漢理工大學學報, 2011, 33(1):108 doi: 10.3963/j.issn.1671-4431.2011.01.024
|
[46] |
Li G Z, Yu R C. Study of implementing computer simulation of filling slurry round-pipe test. Gold, 2008, 29(4): 21 doi: 10.3969/j.issn.1001-1277.2008.04.006李國政, 于潤滄. 充填料漿環管試驗計算機仿真應用的研究. 黃金, 2008, 29(4):21 doi: 10.3969/j.issn.1001-1277.2008.04.006
|
[47] |
Assaad J J, Harb J, Maalouf Y. Measurement of yield stress of cement pastes using the direct shear test. J Non-Newtonian Fluid Mech, 2014, 214: 18 doi: 10.1016/j.jnnfm.2014.10.009
|
[48] |
American Society for Testing and Materials. ASTM C 143/C 143M Standard Test Method for Slump of Hydraulic-Cement Concrete. Philadelphia: American Society for Testing and Materials, 2002
|
[49] |
Chryss A G, M?nch A, Constanti-Carey K. Online rheology monitoring of a thickener underflow//Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings. Perth, 2019: 495
|
[50] |
Chryss A, Fourie A B, Monch A, et al. Towards an integrated approach to tailings management//Proceedings of the 15th International Seminar on Paste and Thickened Tailings. Perth, 2012: 3
|
[51] |
Wu S C, Han L Q, Cheng Z Q, et al. Study on the limit equilibrium slice method considering characteristics of inter-slice normal forces distribution: the improved Spencer method. Environ Earth Sci, 2019, 78(20): 611 doi: 10.1007/s12665-019-8621-5
|
[52] |
Cheng H Y, Wu S C, Zhang X Q, et al. A novel prediction model of strength of paste backfill prepared from waste-unclassified tailings. Adv Mater Sci Eng, 2019, 2019: 3574190
|