<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

裂縫網絡支撐劑非均勻分布對開采動態規律的影響

朱維耀 張啟濤 岳明 張燎源

朱維耀, 張啟濤, 岳明, 張燎源. 裂縫網絡支撐劑非均勻分布對開采動態規律的影響[J]. 工程科學學報, 2020, 42(10): 1318-1324. doi: 10.13374/j.issn2095-9389.2019.10.23.001
引用本文: 朱維耀, 張啟濤, 岳明, 張燎源. 裂縫網絡支撐劑非均勻分布對開采動態規律的影響[J]. 工程科學學報, 2020, 42(10): 1318-1324. doi: 10.13374/j.issn2095-9389.2019.10.23.001
ZHU Wei-yao, ZHANG Qi-tao, YUE Ming, ZHANG Liao-yuan. Effect of uneven distribution of proppant in fracture network on exploitation dynamic characteristics[J]. Chinese Journal of Engineering, 2020, 42(10): 1318-1324. doi: 10.13374/j.issn2095-9389.2019.10.23.001
Citation: ZHU Wei-yao, ZHANG Qi-tao, YUE Ming, ZHANG Liao-yuan. Effect of uneven distribution of proppant in fracture network on exploitation dynamic characteristics[J]. Chinese Journal of Engineering, 2020, 42(10): 1318-1324. doi: 10.13374/j.issn2095-9389.2019.10.23.001

裂縫網絡支撐劑非均勻分布對開采動態規律的影響

doi: 10.13374/j.issn2095-9389.2019.10.23.001
基金項目: 國家科技重大專項資助項目(2017ZX05069-003);教育部專項資金資助項目(FRF-TP-17-027A2)
詳細信息
    通訊作者:

    E-mail:weiyaook@sina.com

  • 中圖分類號: TG357.12

Effect of uneven distribution of proppant in fracture network on exploitation dynamic characteristics

More Information
  • 摘要: 水力壓裂過程中支撐劑的注入是為了防止地應力將已壓裂出的裂縫重新閉合。為了研究復雜裂縫網絡中支撐劑的運移分布規律,及支撐劑非均勻分布對開采動態規律的影響,基于作者之前提出的數個數學模型,建立了致密儲層壓裂注砂開發耦合計算模型。通過計算結果可以得知:裂縫網絡中,支撐劑會在裂縫交匯處大量堆積,砂堤高度高于縫網其他部分。次級裂縫中的支撐劑更多的處于懸浮狀態,且支撐劑沉降堆積高度相較于主裂縫小25%~50%,相互溝通的次級縫具有更高的支撐劑沉降程度。縫網中支撐劑非均勻分布對模擬計算結果具有較大影響,當儲層滲透率為0.05 mD時,忽略支撐劑非均勻分布計算出的產量高出實際值41.7%,因此在進行低滲透率儲層模擬時,支撐劑非均勻分布狀態不可忽略;當基質滲透率為5 mD時,產量計算差異在5%以內,此時不考慮支撐劑非均勻分布相對合理。

     

  • 圖  1  裂縫網絡幾何模型示意圖

    Figure  1.  Illustration of fracture network model

    圖  2  裂縫網絡對稱簡化示意圖

    Figure  2.  Symmetric fracture network model

    圖  3  裂縫網絡鋪砂過程示意圖

    Figure  3.  Illustration of proppant-laden fluid injection process

    圖  4  支撐劑粒徑對縫網整體導流能力的影響

    Figure  4.  Effect of proppant diameter on fracture network conductivity

    圖  5  支撐劑材料對縫網整體導流能力的影響

    Figure  5.  Effect of proppant materials on fracture network conductivity

    圖  6  攜砂液注入速度對縫網整體導流能力的影響

    Figure  6.  Effect of proppant-laden fluid injection velocity on fracture network conductivity

    圖  7  裂縫網絡內支撐劑理想均勻分布與不均勻分布條件下的致密儲層開發300 d壓力場對比。(a)支撐劑均勻分布狀態;(b)基于支撐劑均勻分布的儲層壓力場分布;(c)支撐劑不均勻分布;(d)基于支撐劑不均勻分布的儲層壓力場分布

    Figure  7.  Comparison between pressure distribution based on proppant idealized and uneven distribution at 300 days in a tight oil reservoir: (a) idealized proppant distribution; (b) pressure distribution with even proppant distribution; (c) uneven proppant distribution; (d) pressure distribution with uneven proppant distribution

    圖  8  基質滲透率對計算產量差異的影響

    Figure  8.  Effect of matrix permeability on difference in calculated productivity

    圖  9  耦合計算模型結果與實際生產數據對比

    Figure  9.  Comparison of oil rate between coupling model and oil field data

    表  1  基本計算參數

    Table  1.   Basic calculation parameters

    ParameterValueParametersValue
    Proppant density/(kg·m?3)2600Proppant diameter/mm0.3
    Injection velocity/(m·s?1)0.4Proppant volume fraction0.3
    Fluid density/(kg·m?3)1100Fluid viscosity/(mPa?s)5
    下載: 導出CSV

    表  2  基本計算參數

    Table  2.   Basic calculation parameters

    ParametersValueParametersValue
    Reservoir length/m250Reservoir width/m250
    Reservoir height/m10Permeability of matrix/mD0.5
    TPG in matrix/(MPa·m?1)0.05Porosity of matrix/%9.14
    Wellbore pressure/MPa15Initial reservoir pressure/MPa25
    Note: TPG—Threshold pressure gradient.
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Huang Y Z, Huang J L, Ge C M, et al. A key factor promoting rapid development of shale gas in America: technical progress. Nat Gas Ind, 2009, 29(5): 7 doi: 10.3787/j.issn.1000-0976.2009.05.002

    黃玉珍, 黃金亮, 葛春梅, 等. 技術進步是推動美國頁巖氣快速發展的關鍵. 天然氣工業, 2009, 29(5):7 doi: 10.3787/j.issn.1000-0976.2009.05.002
    [2] Zhu W Y, Yue M, Liu Y F, et al. Research progress on tight oil exploration in China. Chin J Eng, 2019, 41(9): 1103

    朱維耀, 岳明, 劉昀楓, 等. 中國致密油藏開發理論研究進展. 工程科學學報, 2019, 41(9):1103
    [3] Zhu W Y, Ma D X, Qi Q, et al. Multi-zone coupling productivity of horizontal well fracturing with complex fracture networks in shale gas reservoirs. Nat Gas Ind, 2017, 37(7): 60 doi: 10.3787/j.issn.1000-0976.2017.07.009

    朱維耀, 馬東旭, 亓倩, 等. 復雜縫網頁巖壓裂水平井多區耦合產能分析. 天然氣工業, 2017, 37(7):60 doi: 10.3787/j.issn.1000-0976.2017.07.009
    [4] Tang Y, Tang X, Wang G Y, et al. Summary of hydraulic fracturing technology in shale gas development. Geol Bull China, 2011, 30(2-3): 393

    唐穎, 唐玄, 王廣源, 等. 頁巖氣開發水力壓裂技術綜述. 地質通報, 2011, 30(2-3):393
    [5] Liu D H, Xiao J L, Guan F J. Current situation and research direction of shale gas development. J Oil Gas Technol, 2011, 33(1): 119 doi: 10.3969/j.issn.1000-9752.2011.01.027

    劉德華, 肖佳林, 關富佳. 頁巖氣開發技術現狀及研究方向. 石油天然氣學報, 2011, 33(1):119 doi: 10.3969/j.issn.1000-9752.2011.01.027
    [6] Economides M J, Nolte K G. Reservoir Stimulation. Schlumerger Educational Services, 1989
    [7] Osiptsov A A. Fluid mechanics of hydraulic fracturing: a review. J Pet Sci Eng, 2017, 156: 513 doi: 10.1016/j.petrol.2017.05.019
    [8] Patankar N A, Joseph D D, Wang J, et al. Power law correlations for sediment transport in pressure driven channel flows. Int J Multiphase Flow, 2002, 28(8): 1269 doi: 10.1016/S0301-9322(02)00030-7
    [9] Wen Q Z, Jin X C, Shah S N, et al. Experimental investigation of propped fracture network conductivity in naturally fractured shale reservoirs // SPE Annual Technical Conference and Exhibition. New Orleans, 2013: 166474
    [10] Wen Q Z, Zhai H L, Luo M L, et al. Study on proppant settlement and transport rule in shale gas fracturing. Petrol Geol Recovery Efficiency, 2012, 19(6): 104 doi: 10.3969/j.issn.1009-9603.2012.06.025

    溫慶志, 翟恒立, 羅明良, 等. 頁巖氣藏壓裂支撐劑沉降及運移規律實驗研究. 油氣地質與采收率, 2012, 19(6):104 doi: 10.3969/j.issn.1009-9603.2012.06.025
    [11] Wen Q Z, Luo M L, Li J N, et al. Principle of proppant settlement in fracture. Pet Geol Recovery Efficiency, 2009, 16(3): 100 doi: 10.3969/j.issn.1009-9603.2009.03.033

    溫慶志, 羅明良, 李加娜, 等. 壓裂支撐劑在裂縫中的沉降規律. 油氣地質與采收率, 2009, 16(3):100 doi: 10.3969/j.issn.1009-9603.2009.03.033
    [12] Li J H, Zhu W Y, Yue M, et al. Numerical simulation of proppant-laden fluid flow in single fracture and branch fractures of horizontal well. Sci Technol Eng, 2018, 18(22): 38 doi: 10.3969/j.issn.1671-1815.2018.22.005

    李劍輝, 朱維耀, 岳明, 等. 水平井壓裂單縫和多分支縫中攜砂液流動規律數值模擬. 科學技術與工程, 2018, 18(22):38 doi: 10.3969/j.issn.1671-1815.2018.22.005
    [13] Zhang L Y, Zhai H L, Lu N N, et al. Experimental study on proppant gathered settlement in non-Newtonian fracturing fluid. Sci Technol Eng, 2013, 13(34): 10142 doi: 10.3969/j.issn.1671-1815.2013.34.007

    張潦源, 翟恒立, 盧娜娜, 等. 非牛頓壓裂液中支撐劑聚集沉降規律實驗研究. 科學技術與工程, 2013, 13(34):10142 doi: 10.3969/j.issn.1671-1815.2013.34.007
    [14] Barree R D, Conway M W. Experimental and numerical modeling of convective proppant transport. J Pet Technol, 1995, 47(3): 28564
    [15] Cipolla C L, Warpinski N R, Mayerhofer M J. Hydraulic fracture complexity: diagnosis, remediation, and explotation // SPE Asia Pacific Oil and Gas Conference and Exhibition. Perth, 2008
    [16] Maxwell S C, Urbancic T I, Steinsberger N P, et al. Microseismic imaging of hydraulic fracture complexity in the barnett shale // SPE Annual Technical Conference and Exhibition. San Antonio, 2002
    [17] Wen Q Z, Duan X F, Zhan Y P, et al. Study on settlement and migration law of proppant in complex fracture network. J Xian Shiyou Univ Nat Sci, 2016, 31(1): 79

    溫慶志, 段曉飛, 戰永平, 等. 支撐劑在復雜縫網中的沉降運移規律研究. 西安石油大學學報: 自然科學版, 2016, 31(1):79
    [18] Li Y. Study on Proppants Settlement Law in Fracture Network of Volume Fracturing[Dissertation]. Qingdao: China University of Petroleum (East China), 2015

    李楊. 體積壓裂復雜縫網支撐劑沉降規律研究[學位論文]. 青島: 中國石油大學(華東), 2015
    [19] Sahai R, Miskimins J L, Olson K E. Laboratory results of proppant transport in complex fracture systems // SPE Hydraulic Fracturing Technology Conference. Woodlands, 2014: 35
    [20] Zhu W Y, Liu Q, Yue M, et al. Calculation of fracture conductivity considering proppant influence and simulation of proppant transport in fracture. Chem Eng Oil Gas, 2019, 48(2): 75 doi: 10.3969/j.issn.1007-3426.2019.02.013

    朱維耀, 劉青, 岳明, 等. 考慮支撐劑裂縫導流能力計算及縫內支撐劑運移模擬. 石油與天然氣化工, 2019, 48(2):75 doi: 10.3969/j.issn.1007-3426.2019.02.013
    [21] Liu W C, Zhang Q T, Zhu W Y. Numerical simulation of multi-stage fractured horizontal well in low-permeable oil reservoir with threshold pressure gradient with moving boundary. J Pet Sci Eng, 2019, 178: 1112 doi: 10.1016/j.petrol.2019.04.033
    [22] Ishii M, Hibiki T. Thermo-Fluid Dynamics of Two-Phase Flow. Springer Science & Business Media, 2010
    [23] Wu Y L, Liu S H, Dou H S, et al. Simulations of unsteady cavitating turbulent flow in a Francis turbine using the RANS method and the improved mixture model of two-phase flows. Eng Comput, 2011, 27(3): 235 doi: 10.1007/s00366-010-0194-6
    [24] Aminfar H, Mohammadpourfard M, Mohseni F. Two-phase mixture model simulation of the hydro-thermal behavior of an electrical conductive ferrofluid in the presence of magnetic fields. J Magn Magn Mater, 2012, 324(5): 830 doi: 10.1016/j.jmmm.2011.09.028
    [25] Krieger I M, Dougherty T J. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol, 1959, 3: 137 doi: 10.1122/1.548848
    [26] Warren J E, Root P J. The behavior of naturally fractured reservoirs. Soc Pet Eng J, 1963, 3(03): 245 doi: 10.2118/426-PA
    [27] Mayerhofer M J, Lolon E, Warpinski N R, et al. What is stimulated reservoir volume. SPE Prod Oper, 2010, 25(1): 89
    [28] Kong B, Fathi E, Ameri S. Coupled 3-D numerical simulation of proppant distribution and hydraulic fracturing performance optimization in Marcellus shale reservoirs. Int J Coal Geol, 2015, 147-148: 35 doi: 10.1016/j.coal.2015.06.006
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  3626
  • HTML全文瀏覽量:  960
  • PDF下載量:  51
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-10-23
  • 刊出日期:  2020-10-25

目錄

    /

    返回文章
    返回