<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于監督學習的前列腺MR/TRUS圖像分割和配準方法

叢明 吳童 劉冬 楊德勇 杜宇

叢明, 吳童, 劉冬, 楊德勇, 杜宇. 基于監督學習的前列腺MR/TRUS圖像分割和配準方法[J]. 工程科學學報, 2020, 42(10): 1362-1371. doi: 10.13374/j.issn2095-9389.2019.10.10.006
引用本文: 叢明, 吳童, 劉冬, 楊德勇, 杜宇. 基于監督學習的前列腺MR/TRUS圖像分割和配準方法[J]. 工程科學學報, 2020, 42(10): 1362-1371. doi: 10.13374/j.issn2095-9389.2019.10.10.006
CONG Ming, WU Tong, LIU Dong, YANG De-yong, DU Yu. Prostate MR/TRUS image segmentation and registration methods based on supervised learning[J]. Chinese Journal of Engineering, 2020, 42(10): 1362-1371. doi: 10.13374/j.issn2095-9389.2019.10.10.006
Citation: CONG Ming, WU Tong, LIU Dong, YANG De-yong, DU Yu. Prostate MR/TRUS image segmentation and registration methods based on supervised learning[J]. Chinese Journal of Engineering, 2020, 42(10): 1362-1371. doi: 10.13374/j.issn2095-9389.2019.10.10.006

基于監督學習的前列腺MR/TRUS圖像分割和配準方法

doi: 10.13374/j.issn2095-9389.2019.10.10.006
基金項目: 國家自然科學基金資助項目(51575078, 51705063)
詳細信息
    通訊作者:

    E-mail:liud@dlut.edu.cn

  • 中圖分類號: TP391.7

Prostate MR/TRUS image segmentation and registration methods based on supervised learning

More Information
  • 摘要: 前列腺核磁超聲圖像配準融合有助于實現前列腺腫瘤的靶向穿刺。傳統的配準方法主要是針對手動分割的前列腺核磁(Magnetic resonance, MR)和經直腸超聲(Trans-rectal ultrasound, TRUS)圖像上對應的生理特征點作為參考點,進行剛體或非剛體配準。針對超聲圖像因成像質量低導致手動分割配準效率低下的問題,提出一種基于監督學習的前列腺MR/TRUS圖像自動分割方法,與術前核磁圖像進行非剛體配準。首先,針對圖像分割任務訓練前列腺超聲圖像的活動表觀模型(Active appearance model, AAM),并基于隨機森林建立邊界驅動的數學模型,實現超聲圖像自動分割。接著,提取術前分割的核磁圖像與自動分割的超聲圖像建立輪廓的形狀特征矢量,進行特征匹配與圖像配準。實驗結果表明,本文方法能準確實現前列腺超聲圖像自動分割與配準融合,9組配準結果的戴斯相似性系數(Dice similarity coefficient, DSC)均大于0.98,同時尿道口處特征點的平均定位精度達1.64 mm,相比傳統方法具有更高的配準精度。

     

  • 圖  1  初始姿態${{{T}}_{{\rm{ini}}}}$對收斂結果的影響。(a~d)初始姿態參數過大無法收斂;(e~f)初始姿態滿足收斂條件

    Figure  1.  Effect of the initial position parameter ${{{T}}_{{\rm{ini}}}}$ on the results of convergence: (a?d) large initial position parameter resulted error convergence; (e?f) initial position parameter met convergence conditions

    圖  2  前列腺隨機森林模型的訓練和預測過程

    Figure  2.  Training and prediction of the prostate random forest model

    圖  3  均值形狀的初始姿態

    Figure  3.  Initial position parameters of the mean shape model

    圖  4  姿態${{{T}}_k}$下的坐標變化關系

    Figure  4.  Coordinate transformation relationship at position ${{{T}}_k}$

    圖  5  生成最小外接矩形

    Figure  5.  Generation of the minimum enclosing rectangle

    圖  6  前列腺超聲圖像的自動分割過程。(a)前列腺TRUS圖像;(b)參數尋優結果;(c)圖像分割結果;(d)分割對比結果

    Figure  6.  Automatic segmentation process of prostate TRUS images: (a) prostate TRUS image; (b) parameters optimization result; (c) segmentation result; (d) image segmentation comparison results

    圖  7  待配準的前列腺MR/TRUS圖像。(a)MR圖像輪廓點;(b)TRUS圖像輪廓點

    Figure  7.  Prostate MR/TRUS images to be registered: (a) contour points on MR image; (b) contour points on TRUS image

    圖  8  形狀描述符的建立

    Figure  8.  Construction of the shape descriptor

    圖  9  改進KM算法的對比結果

    Figure  9.  Results compared with the improved KM algorithm

    圖  10  圖像配準融合結果。(a)MR圖像的變換結果;(b)MR/TRUS圖像融合結果

    Figure  10.  Registration results: (a) transformation result of MR image; (b) registration result of MR/TRUS images

    圖  11  前列腺超聲圖像分割結果。(a1~a5)待分割的TRUS圖像;(b1~b5)隨機森林預分割結果;(c1c5)輪廓分割收斂過程

    Figure  11.  Segmentation results of prostate US images: (a1?a5) initial TRUS images; (b1?b5) pre-segmentation results of random forest; (c1?c5) convergence processes of contour segmentation

    圖  12  核磁超聲圖像配準結果對比

    Figure  12.  Results of MR/TRUS images registration

    圖  13  本文方法與傳統方法對比結果

    Figure  13.  Results compared with the traditional method

    圖  14  尿道特征點定位結果

    Figure  14.  Location results of urethral points

    表  1  尿道特征點定位結果對比

    Table  1.   Comparison of location results of urethral points

    SampleMethod proposed Literature method
    DSCTE/mm DSCTE/mm
    10.99381.76 0.99391.93
    20.98731.24 0.98163.84
    30.98971.92 0.98931.27
    40.99061.58 0.98722.55
    50.98711.47 0.98841.42
    AP0.98971.59 0.98802.20
    ${d_2}$0.00240.23 0.00390.93
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Deng Y S, He Y H, Zhou X F. Development of prostate targeted puncture technology. J Mimimally Invasive Urology, 2018, 7(6): 428

    鄧益森, 何宇輝, 周曉峰. 前列腺靶向穿刺技術發展概況. 微創泌尿外科雜志, 2018, 7(6):428
    [2] Guichard G, Larré, Gallina A, et al. Extended 21-sample needle biopsy protocol for diagnosis of prostate cancer in 1000 consecutive patients. Eur Urol, 2007, 52(2): 430 doi: 10.1016/j.eururo.2007.02.062
    [3] Zhou Z E, Yan W G, Zhou Y, et al. Recent progress in MRI-ultrasound fusion for guidance of targeted prostate biopsy. Chin J Surg, 2016, 54(10): 792 doi: 10.3760/cma.j.issn.0529-5815.2016.10.016

    周智恩, 嚴維剛, 周毅, 等. MRI-超聲融合引導下前列腺靶向穿刺活檢的最新進展. 中華外科雜志, 2016, 54(10):792 doi: 10.3760/cma.j.issn.0529-5815.2016.10.016
    [4] Qu H W, Liu H, Cui Z L, et al. Focusing on MRI-suspected lesions in targeted transrectal prostate biopsy guided by MRI-TRUS fusion imaging for the diagnosis of prostate cancer. Natl J Androl, 2016, 22(9): 782

    曲華偉, 劉輝, 崔子連, 等. 重點穿刺MRI可疑病灶區域在MRI/TRUS融合成像引導靶向前列腺穿刺中的診斷價值. 中華男科學雜志, 2016, 22(9):782
    [5] Schlenker B, Apfelbeck M, Buchner A, et al. MRI-TRUS fusion biopsy of the prostate: quality of image fusion in a clinical setting. Clin Hemorheol Microcirculat, 2018, 70(4): 433
    [6] Mitra J, Martí R, Oliver A, et al. Prostate multimodality image registration based on B-splines and quadrature local energy. Int J Comput Assisted Radiol Surg, 2012, 7(3): 445 doi: 10.1007/s11548-011-0635-8
    [7] Sun Y, Yuan J, Qiu W, et al. Three-dimensional nonrigid MR-TRUS registration using dual optimization. IEEE Trans Med Imag, 2015, 34(5): 1085 doi: 10.1109/TMI.2014.2375207
    [8] Moradi M, Janoos F, Fedorov A, et al. Two solutions for registration of ultrasound to MRI for image-guided prostate interventions // 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, 2012: 1129
    [9] Fedorov A, Khallaghi S, Sánchez C A, et al. Open-source image registration for MRI-TRUS fusion-guided prostate interventions. Int J Comput Assisted Radiol Surg, 2015, 10(6): 925 doi: 10.1007/s11548-015-1180-7
    [10] Ni D, Wu H L. MRI-TRUS multi-modality image fusion for targeted prostate biopsy. J Shenzhen Univ Sci Eng, 2016, 33(2): 111 doi: 10.3724/SP.J.1249.2016.02111

    倪東, 吳海浪. 基于核磁-超聲融合的前列腺靶向穿刺系統. 深圳大學學報: 理工版, 2016, 33(2):111 doi: 10.3724/SP.J.1249.2016.02111
    [11] Wang W R. Research on Prostate Puncture Assisted by MR and TRUS Image[Dissertation]. Harbin: Harbin Institute of Technology, 2018

    王煒榮. MR與TRUS圖像輔助前列腺穿刺技術研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2018
    [12] Du C. MR and TRUS Image Denoising and Segmentation Methods in Prostate Puncture Guidance[Dissertation]. Harbin: Harbin Institute of Technology, 2019

    杜超. 前列腺穿刺引導中的MR和TRUS圖像去噪與分割方法[學位論文]. 哈爾濱: 哈爾濱工業大學, 2019
    [13] Cootes T F, Edwards G J, Taylor C J. Active appearance models. IEEE Trans Pattern Anal Mach Intellig, 2001, 23(6): 681 doi: 10.1109/34.927467
    [14] Bookstein F L. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intellig, 1989, 11(6): 567 doi: 10.1109/34.24792
    [15] Svetnik V, Liaw A, Tong C, et al. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci, 2003, 43(6): 1947 doi: 10.1021/ci034160g
    [16] Rohr K, Fornefett M, Stiehl H S. Spline-based elastic image registration: integration of landmark errors and orientation attributes. Comput Vision Image Understand, 2003, 90(2): 153 doi: 10.1016/S1077-3142(03)00048-1
    [17] Evangelidis G D, Psarakis E Z. Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans Pattern Anal Mach Intellig, 2008, 30(10): 1858 doi: 10.1109/TPAMI.2008.113
    [18] Ghosh P, Mitchell M, Tanyi J A, et al. Incorporating priors for medical image segmentation using a genetic algorithm. Neurocomputing, 2016, 195: 181 doi: 10.1016/j.neucom.2015.09.123
    [19] Cosío F A. Automatic initialization of an active shape model of the prostate. Med Image Anal, 2008, 12(4): 469 doi: 10.1016/j.media.2008.02.001
    [20] Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intellig, 2002, 24(4): 509 doi: 10.1109/34.993558
    [21] Munkres J. Algorithms for the assignment and transportation problems. J Soc Ind Appl Math, 1957, 5(1): 32 doi: 10.1137/0105003
    [22] ?erifovi?-Trbali? A, Demirovi? D, Prlja?a N, et al. Intensity-based elastic registration incorporating anisotropic landmark errors and rotational information. Int J Comput Assisted Radiol Surg, 2009, 4(5): 463 doi: 10.1007/s11548-009-0358-2
    [23] Keys R. Cubic convolution interpolation for digital image processing. IEEE Trans Acoust Speech Signal Process, 1981, 29(6): 1153 doi: 10.1109/TASSP.1981.1163711
    [24] Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intellig, 1993, 15(9): 850 doi: 10.1109/34.232073
    [25] Dice L R. Measures of the amount of ecologic association between species. J Ecol, 1945, 26(3): 297 doi: 10.2307/1932409
    [26] Mitra J, Marti R, Oliver A, et al. A comparison of thin-plate splines with automatic correspondences and B-splines with uniform grids for multimodal prostate registration. Proc SPIE - Int Soc Opt Eng, 2011, 7964(2): 150
  • 加載中
圖(14) / 表(1)
計量
  • 文章訪問數:  3984
  • HTML全文瀏覽量:  1068
  • PDF下載量:  87
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-10-10
  • 刊出日期:  2020-10-25

目錄

    /

    返回文章
    返回