Preparation and performance of 3D-printed positive electrode for lithium-ion battery
-
摘要: 采用擠出式3D打印技術制備鋰離子電池電極,選取三元鎳鈷錳酸鋰(LiNi0.5Co0.2Mn0.3O2)作為正極活性材料,以去離子水、羥乙基纖維素和其他添加劑為溶劑來制備性能穩定且適合3D打印技術的鋰離子電池正極墨水,利用流變儀、X射線衍射儀、電池測試儀、ANSYS模擬等探究了增稠劑種類和含量、墨水黏度、打印工藝等對墨水流變性質和可打印性能的影響。結果表明:選取羥乙基纖維素/羥丙基纖維素質量比為1∶1混合且質量分數為3%時,所制備的墨水黏度為20.26 Pa·s,此時墨水具有較好的流變性,打印過程出墨均勻,打印電極光滑平整,滿足后期墨水的可打印性要求,經模擬分析,墨水黏度對墨水流動性影響明顯;電極材料經超聲分散、打印、燒結等過程后未造成原有晶體結構的改變;電極首次充放電容量分別為226.5和119.4 mA·h·g?1,經過20次循環后,電池充放電容量的變化率減小并趨于穩定,3D打印電極表現出良好的循環穩定性。Abstract: Miniaturized batteries are widely utilized in microscale devices, and 3D printing technology has great advantages in the manufacture of miniaturized battery electrodes. Lithium–nickel–cobalt–manganate material (LiNi0.5Co0.2Mn0.3O2) is gradually becoming a mainstream cathode material for lithium-ion batteries due to its high energy density, high rate of performance, high stability, and low cost. In this study, we prepared lithium-ion-battery electrodes using extrusion-based three-dimensional (3D) printing technology, and we selected ternary nickel–cobalt–manganese hydride as the positive active material. Subsequently, using deionized water, hydroxyethyl cellulose, and other additives, positive inks was prepared for the lithium-ion battery that exhibited stable performance and adequate 3D printing. The effects of thickener type and content, ink viscosity, and the printing process on the rheological properties and printability of the ink were investigated using a rheometer, X-ray diffraction, a battery tester, and ANSYS simulation analysis. The results show that when the mass ratio of hydroxyethyl cellulose/hydroxypropyl cellulose is 1∶1 and the mass fraction is 3%, the viscosity of the prepared ink is 20.26 Pa·s, and it shows good rheology and uniformity in printing. At present, the printing electrode has good rheology, steady ink outflow, and a smooth surface, which satisfies the printability requirements of the ink. Additionally, the simulation results show that the fluidity of the ink is significantly influenced by its viscosity. The electrode preparation process, e.g., ultrasonic dispersion, printing, or sintering, does not lead to a change in the crystal structure of the electrode material. The first-charge and discharge capacities of the electrodes are 226.5 and 119.4 mA·h·g?1, respectively. After 20 cycles, the change rates of the charge and discharge capacities in the battery decrease and then tend to become stable. Lastly, the 3D printed electrode exhibits good cycle stability.
-
Key words:
- lithium ion battery /
- ternary material /
- printing ink /
- thickener /
- rheology
-
表 1 不同增稠劑的具體參數
Table 1. Specific parameters of different thickeners
Thickener type Appearance Molecular weight Decomposition temperature /℃ Density/(g?mL?1) Hydroxyethyl cellulose White to light yellow fibrous or powdery solid 144673 288?290 0.75 Hydroxypropyl cellulose White or light yellow solid powder 100000 — 0.5 Polyacrylamide White powder > 5 million >300 1.189 Sodium polyacrylate White powder 8?10 million — 1.32 表 2 不同增稠劑含量的正極打印墨水黏度測試
Table 2. Viscosities of positive printing inks with different thickener contents
Thickener mass fraction/% Rotating speed/
(r·min?1)Torque/
%Viscosity/
(Pa·s)1 10 71.8 12.36 2 10 84.3 15.49 3 10 85.1 20.26 4 10 86.2 23.60 5 10 87.8 26.56 259luxu-164 -
參考文獻
[1] Xie Y, Li J H, Wang J, et al. Research progress in ternary cathode material of lithium ion batteries. Inorg Chem Ind, 2018, 50(7): 18謝元, 李俊華, 王佳, 等. 鋰離子電池三元正極材料的研究進展. 無機鹽工業, 2018, 50(7):18 [2] Wang P B, Zheng J C. Development status and prospects of lithium ion batteries. Nat Mag, 2017, 39(4): 283 doi: 10.3969/j.issn.0253-9608.2017.04.006王鵬博, 鄭俊超. 鋰離子電池的發展現狀及展望. 自然雜志, 2017, 39(4):283 doi: 10.3969/j.issn.0253-9608.2017.04.006 [3] Wu Y Q, Ni H, Meng D C, et al. Research progress and application prospect of high voltage nickel-cobalt-manganese ternary cathode materials. Adv Mater Ind, 2015(9): 18 doi: 10.3969/j.issn.1008-892X.2015.09.005吳英強, 倪歡, 孟德超, 等. 高壓鎳鈷錳三元正極材料研究進展及應用前景展望. 新材料產業, 2015(9):18 doi: 10.3969/j.issn.1008-892X.2015.09.005 [4] Wei Z M. Development status and trend of cathode materials for lithium ion batteries in China. Gansu Metall, 2017, 39(4): 29 doi: 10.3969/j.issn.1672-4461.2017.04.008魏致慧. 我國鋰離子電池正極材料發展現狀及趨勢. 甘肅冶金, 2017, 39(4):29 doi: 10.3969/j.issn.1672-4461.2017.04.008 [5] Sun Y C. Research and application of Li(Mn, Co, Ni)O2 cathode material. Inorg Chem Ind, 2014, 46(1): 1 doi: 10.3969/j.issn.1006-4990.2014.01.001孫玉城. 鎳鈷錳酸鋰三元正極材料的研究與應用. 無機鹽工業, 2014, 46(1):1 doi: 10.3969/j.issn.1006-4990.2014.01.001 [6] Guo H X, Qiao Y C, Mu P Z. Progress in research and application of cathode materials for lithium-ion battery. Inorg Chem Ind, 2016, 48(3): 5郭紅霞, 喬月純, 穆培振. 鋰離子電池正極材料研究與應用進展. 無機鹽工業, 2016, 48(3):5 [7] Woo S G, Kim J H, Kim H R, et al. Failure mechanism analysis of LiNi0.88Co0.09Mn0.03O2 cathodes in Li-ion full cells. J Electroanal Chem, 2017, 799: 315 doi: 10.1016/j.jelechem.2017.06.034 [8] Yu H G, Wang H, Sheng J. Recent progress in cobalt/nickel/manganese oxides as positive electrode materials. Chin J Power Sources, 2014, 38(9): 1749 doi: 10.3969/j.issn.1002-087X.2014.09.050俞會根, 王恒, 盛軍. 三元正極材料Li[Ni-Co-Mn]O2的研究進展. 電源技術, 2014, 38(9):1749 doi: 10.3969/j.issn.1002-087X.2014.09.050 [9] Longo R C, Kong F, Liang C P, et al. Transition metal ordering optimization for high-reversible capacity positive electrode materials in the Li–Ni–Co–Mn pseudoquaternary system. J Phys Chem C, 2016, 120(16): 8540 doi: 10.1021/acs.jpcc.6b02240 [10] Yadav S, Yamasani P, Kumar S. Experimental studies on a micro power generator using thermo-electric modules mounted on a micro-combustor. Energy Convers Manage, 2015, 99: 1 doi: 10.1016/j.enconman.2015.04.019 [11] Chou S K, Yang W M, Chua K J, et al. Development of micro power generators–a review. Appl Energy, 2011, 88(1): 1 doi: 10.1016/j.apenergy.2010.07.010 [12] Huang R G. Thinking about 3D printing technology. Technol Innov Appl, 2014(20): 40黃榮根. 對3D打印技術的思考. 科技創新與應用, 2014(20):40 [13] Gao Y F, Dou H, Tong H, et al. Development status and application prospect of 3D printing technology. China Sci Technol Inform, 2017(12): 30高艷芳, 豆賀, 佟晗, 等. 3D打印技術的發展現狀及應用前景. 中國科技信息, 2017(12):30 [14] Zhang Z Q. Design and Research of 3D Printer based on FDM[Dissertation]. Changchun: Changchun University of Technology, 2015張自強. 基于FDM技術3D打印機的設計與研究[學位論文]. 長春: 長春工業大學, 2015 [15] Tumbleston J R, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects. Science, 2015, 347(6228): 1349 doi: 10.1126/science.aaa2397 [16] Ober T J, Foresti D, Lewis J A. Active mixing of complex fluids at the microscale. Proc Natl Acad Sci, 2015, 112(40): 12293 doi: 10.1073/pnas.1509224112 [17] Lewis J A. Direct ink writing of 3D functional materials. Adv Funct Mater, 2006, 16(17): 2193 doi: 10.1002/adfm.200600434 -