<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

3D打印鋰離子電池正極的制備及性能

左文婧 屈銀虎 祁攀虎 符寒光 王鈺凡 高浩斐 張紅

左文婧, 屈銀虎, 祁攀虎, 符寒光, 王鈺凡, 高浩斐, 張紅. 3D打印鋰離子電池正極的制備及性能[J]. 工程科學學報, 2020, 42(3): 358-364. doi: 10.13374/j.issn2095-9389.2019.10.09.006
引用本文: 左文婧, 屈銀虎, 祁攀虎, 符寒光, 王鈺凡, 高浩斐, 張紅. 3D打印鋰離子電池正極的制備及性能[J]. 工程科學學報, 2020, 42(3): 358-364. doi: 10.13374/j.issn2095-9389.2019.10.09.006
ZUO Wen-jing, QU Yin-hu, QI Pan-hu, FU Han-guang, WANG Yu-fan, GAO Hao-fei, ZHANG Hong. Preparation and performance of 3D-printed positive electrode for lithium-ion battery[J]. Chinese Journal of Engineering, 2020, 42(3): 358-364. doi: 10.13374/j.issn2095-9389.2019.10.09.006
Citation: ZUO Wen-jing, QU Yin-hu, QI Pan-hu, FU Han-guang, WANG Yu-fan, GAO Hao-fei, ZHANG Hong. Preparation and performance of 3D-printed positive electrode for lithium-ion battery[J]. Chinese Journal of Engineering, 2020, 42(3): 358-364. doi: 10.13374/j.issn2095-9389.2019.10.09.006

3D打印鋰離子電池正極的制備及性能

doi: 10.13374/j.issn2095-9389.2019.10.09.006
基金項目: 陜西省科學技術研究發展計劃?工業攻關資助項目(2013K09-33);西安市科技計劃資助項目(CXY1517(3),2017074CG/RC03/XAGC002,2017074CG/RC03/XAGC007);陜西省重點研發計劃資助項目(2018GY-130)
詳細信息
    通訊作者:

    E-mail:quyinhu@xpu.edu.cn

  • 中圖分類號: TM504

Preparation and performance of 3D-printed positive electrode for lithium-ion battery

More Information
  • 摘要: 采用擠出式3D打印技術制備鋰離子電池電極,選取三元鎳鈷錳酸鋰(LiNi0.5Co0.2Mn0.3O2)作為正極活性材料,以去離子水、羥乙基纖維素和其他添加劑為溶劑來制備性能穩定且適合3D打印技術的鋰離子電池正極墨水,利用流變儀、X射線衍射儀、電池測試儀、ANSYS模擬等探究了增稠劑種類和含量、墨水黏度、打印工藝等對墨水流變性質和可打印性能的影響。結果表明:選取羥乙基纖維素/羥丙基纖維素質量比為1∶1混合且質量分數為3%時,所制備的墨水黏度為20.26 Pa·s,此時墨水具有較好的流變性,打印過程出墨均勻,打印電極光滑平整,滿足后期墨水的可打印性要求,經模擬分析,墨水黏度對墨水流動性影響明顯;電極材料經超聲分散、打印、燒結等過程后未造成原有晶體結構的改變;電極首次充放電容量分別為226.5和119.4 mA·h·g?1,經過20次循環后,電池充放電容量的變化率減小并趨于穩定,3D打印電極表現出良好的循環穩定性。

     

  • 圖  1  三元鎳鈷錳酸鋰正極制備流程圖

    Figure  1.  Flow chart of the preparation of the ternary lithium nickel–cobalt–manganese oxide material positive electrode

    圖  2  4種不同增稠劑所制備的正極墨水打印形貌圖. (a)聚丙烯酸鈉;(b)聚丙烯酰胺;(c)羥丙基纖維素;(d)羥乙基纖維素

    Figure  2.  Printed topographies of positive inks prepared using four different thickeners: (a) sodium polyacrylate; (b) polyacrylamide; (c) hydroxypropyl cellulose; (d) hydroxyethyl cellulose

    圖  3  羥乙基/羥丙基纖維素混合配比所制備的正極墨水打印形貌圖

    Figure  3.  Printed topography of positive ink prepared using hydroxyethyl/hydroxypropyl cellulose

    圖  4  不同增稠劑所制備正極打印墨水的表觀黏度-剪切速率曲線

    Figure  4.  Apparent viscosity–shear rate curves of positive printing ink prepared using different thickeners

    圖  5  以羥乙基/羥丙基纖維素為增稠劑的正極打印墨水的模量-應力曲線

    Figure  5.  Modulus–stress curves of positive printing ink prepared using a hydroxyethyl/hydroxypropyl mixed thickener

    圖  6  不同質量分數增稠劑的打印電極形貌圖. (a)1%;(b)3%;(c)5%

    Figure  6.  Printed electrode topographies of inks with different mass fractions of thickeners: (a) 1%; (b) 3%; (c) 5%

    圖  7  墨水在不同黏度下速度分布云圖. (a)31.39 Pa·s;(b)27.58 Pa·s;(c)24.64 Pa·s;(d)23.58 Pa·s;(e)22.73 Pa·s;(f)20.26 Pa·s

    Figure  7.  Speed distributions of inks with different viscosities: (a) 31.39 Pa·s;(b) 27.58 Pa·s;(c) 24.64 Pa·s;(d) 23.58 Pa·s;(e) 22.73 Pa·s;(f) 20.26 Pa·s

    圖  8  X射線衍射圖譜

    Figure  8.  XRD patterns

    圖  9  3D打印三元材料電極的循環性能曲線

    Figure  9.  Cycle performances of 3D-printed ternary material electrode

    圖  10  不同電流密度下LNCM523打印電極的倍率性能曲線

    Figure  10.  Magnification performances of LNCM523 printed electrode at different current densities

    表  1  不同增稠劑的具體參數

    Table  1.   Specific parameters of different thickeners

    Thickener typeAppearanceMolecular weightDecomposition temperature /℃Density/(g?mL?1
    Hydroxyethyl celluloseWhite to light yellow fibrous or powdery solid144673288?2900.75
    Hydroxypropyl celluloseWhite or light yellow solid powder1000000.5
    PolyacrylamideWhite powder> 5 million>3001.189
    Sodium polyacrylateWhite powder8?10 million1.32
    下載: 導出CSV

    表  2  不同增稠劑含量的正極打印墨水黏度測試

    Table  2.   Viscosities of positive printing inks with different thickener contents

    Thickener mass fraction/%Rotating speed/
    (r·min?1)
    Torque/
    %
    Viscosity/
    (Pa·s)
    11071.812.36
    21084.315.49
    31085.120.26
    41086.223.60
    51087.826.56
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Xie Y, Li J H, Wang J, et al. Research progress in ternary cathode material of lithium ion batteries. Inorg Chem Ind, 2018, 50(7): 18

    謝元, 李俊華, 王佳, 等. 鋰離子電池三元正極材料的研究進展. 無機鹽工業, 2018, 50(7):18
    [2] Wang P B, Zheng J C. Development status and prospects of lithium ion batteries. Nat Mag, 2017, 39(4): 283 doi: 10.3969/j.issn.0253-9608.2017.04.006

    王鵬博, 鄭俊超. 鋰離子電池的發展現狀及展望. 自然雜志, 2017, 39(4):283 doi: 10.3969/j.issn.0253-9608.2017.04.006
    [3] Wu Y Q, Ni H, Meng D C, et al. Research progress and application prospect of high voltage nickel-cobalt-manganese ternary cathode materials. Adv Mater Ind, 2015(9): 18 doi: 10.3969/j.issn.1008-892X.2015.09.005

    吳英強, 倪歡, 孟德超, 等. 高壓鎳鈷錳三元正極材料研究進展及應用前景展望. 新材料產業, 2015(9):18 doi: 10.3969/j.issn.1008-892X.2015.09.005
    [4] Wei Z M. Development status and trend of cathode materials for lithium ion batteries in China. Gansu Metall, 2017, 39(4): 29 doi: 10.3969/j.issn.1672-4461.2017.04.008

    魏致慧. 我國鋰離子電池正極材料發展現狀及趨勢. 甘肅冶金, 2017, 39(4):29 doi: 10.3969/j.issn.1672-4461.2017.04.008
    [5] Sun Y C. Research and application of Li(Mn, Co, Ni)O2 cathode material. Inorg Chem Ind, 2014, 46(1): 1 doi: 10.3969/j.issn.1006-4990.2014.01.001

    孫玉城. 鎳鈷錳酸鋰三元正極材料的研究與應用. 無機鹽工業, 2014, 46(1):1 doi: 10.3969/j.issn.1006-4990.2014.01.001
    [6] Guo H X, Qiao Y C, Mu P Z. Progress in research and application of cathode materials for lithium-ion battery. Inorg Chem Ind, 2016, 48(3): 5

    郭紅霞, 喬月純, 穆培振. 鋰離子電池正極材料研究與應用進展. 無機鹽工業, 2016, 48(3):5
    [7] Woo S G, Kim J H, Kim H R, et al. Failure mechanism analysis of LiNi0.88Co0.09Mn0.03O2 cathodes in Li-ion full cells. J Electroanal Chem, 2017, 799: 315 doi: 10.1016/j.jelechem.2017.06.034
    [8] Yu H G, Wang H, Sheng J. Recent progress in cobalt/nickel/manganese oxides as positive electrode materials. Chin J Power Sources, 2014, 38(9): 1749 doi: 10.3969/j.issn.1002-087X.2014.09.050

    俞會根, 王恒, 盛軍. 三元正極材料Li[Ni-Co-Mn]O2的研究進展. 電源技術, 2014, 38(9):1749 doi: 10.3969/j.issn.1002-087X.2014.09.050
    [9] Longo R C, Kong F, Liang C P, et al. Transition metal ordering optimization for high-reversible capacity positive electrode materials in the Li–Ni–Co–Mn pseudoquaternary system. J Phys Chem C, 2016, 120(16): 8540 doi: 10.1021/acs.jpcc.6b02240
    [10] Yadav S, Yamasani P, Kumar S. Experimental studies on a micro power generator using thermo-electric modules mounted on a micro-combustor. Energy Convers Manage, 2015, 99: 1 doi: 10.1016/j.enconman.2015.04.019
    [11] Chou S K, Yang W M, Chua K J, et al. Development of micro power generators–a review. Appl Energy, 2011, 88(1): 1 doi: 10.1016/j.apenergy.2010.07.010
    [12] Huang R G. Thinking about 3D printing technology. Technol Innov Appl, 2014(20): 40

    黃榮根. 對3D打印技術的思考. 科技創新與應用, 2014(20):40
    [13] Gao Y F, Dou H, Tong H, et al. Development status and application prospect of 3D printing technology. China Sci Technol Inform, 2017(12): 30

    高艷芳, 豆賀, 佟晗, 等. 3D打印技術的發展現狀及應用前景. 中國科技信息, 2017(12):30
    [14] Zhang Z Q. Design and Research of 3D Printer based on FDM[Dissertation]. Changchun: Changchun University of Technology, 2015

    張自強. 基于FDM技術3D打印機的設計與研究[學位論文]. 長春: 長春工業大學, 2015
    [15] Tumbleston J R, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects. Science, 2015, 347(6228): 1349 doi: 10.1126/science.aaa2397
    [16] Ober T J, Foresti D, Lewis J A. Active mixing of complex fluids at the microscale. Proc Natl Acad Sci, 2015, 112(40): 12293 doi: 10.1073/pnas.1509224112
    [17] Lewis J A. Direct ink writing of 3D functional materials. Adv Funct Mater, 2006, 16(17): 2193 doi: 10.1002/adfm.200600434
  • 加載中
圖(10) / 表(2)
計量
  • 文章訪問數:  1264
  • HTML全文瀏覽量:  861
  • PDF下載量:  63
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-10-09
  • 刊出日期:  2020-03-01

目錄

    /

    返回文章
    返回