<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

縫槽水壓爆破破巖載荷實驗研究

夏彬偉 高玉剛 劉承偉 歐昌楠 彭子燁 劉浪

夏彬偉, 高玉剛, 劉承偉, 歐昌楠, 彭子燁, 劉浪. 縫槽水壓爆破破巖載荷實驗研究[J]. 工程科學學報, 2020, 42(9): 1130-1138. doi: 10.13374/j.issn2095-9389.2019.10.06.002
引用本文: 夏彬偉, 高玉剛, 劉承偉, 歐昌楠, 彭子燁, 劉浪. 縫槽水壓爆破破巖載荷實驗研究[J]. 工程科學學報, 2020, 42(9): 1130-1138. doi: 10.13374/j.issn2095-9389.2019.10.06.002
XIA Bin-wei, GAO Yu-gang, LIU Cheng-wei, OU Chang-nan, PENG Zi-ye, LIU Lang. Experimental study on rock-breaking load in slot-hydraulic blasting[J]. Chinese Journal of Engineering, 2020, 42(9): 1130-1138. doi: 10.13374/j.issn2095-9389.2019.10.06.002
Citation: XIA Bin-wei, GAO Yu-gang, LIU Cheng-wei, OU Chang-nan, PENG Zi-ye, LIU Lang. Experimental study on rock-breaking load in slot-hydraulic blasting[J]. Chinese Journal of Engineering, 2020, 42(9): 1130-1138. doi: 10.13374/j.issn2095-9389.2019.10.06.002

縫槽水壓爆破破巖載荷實驗研究

doi: 10.13374/j.issn2095-9389.2019.10.06.002
基金項目: 國家重點研發計劃課題資助項目(2018YFC0808401);國家自然科學基金資助項目(51974042)
詳細信息
    通訊作者:

    E-mail:liuchengwei12@126.com

  • 中圖分類號: TU 443

Experimental study on rock-breaking load in slot-hydraulic blasting

More Information
  • 摘要: 針對縫槽爆破中以空氣作為不耦合介質,其沖擊波和準靜態壓力較小、炸藥能量利用率低、破巖能力弱的問題,提出縫槽水壓爆破方法。利用水的微壓縮性,以及傳能效率高等特點,以水作為炮孔不耦合介質,提升縫槽爆破破巖載荷,開展其爆破破巖載荷特征研究。通過自主研發的縫槽爆破載荷測試實驗系統,分別開展縫槽空氣不耦合爆破和縫槽水壓爆破實驗。結果表明:水作為縫槽爆破不耦合介質,其沖擊波壓力峰值約是縫槽空氣不耦合爆破的35倍,沖擊波壓力上升沿更平緩,入射效率更高;其準靜態壓力峰值是縫槽空氣不耦合爆破的37~46倍,水壓爆破的準靜態壓力壓降緩慢,保壓時間更長。研究表明,縫槽水壓爆破的炸藥能量利用率高,爆炸載荷提升明顯。上述研究成果有助于深入認識縫槽水壓爆破破巖載荷特性,同時對該方法的工程應用提供理論和實驗支撐。

     

  • 圖  1  爆破載荷測試實驗系統圖示

    Figure  1.  Diagram of blasting load test system

    圖  2  爆炸腔。(a)實物圖;(b)結構圖(單位:mm)

    Figure  2.  Blasting cavity: (a) physical chart; (b) structure diagram (unit: mm)

    圖  3  炸藥實物圖

    Figure  3.  Physical chart of explosive

    圖  4  兩種傳感器實物圖。(a)PVDF薄膜壓電傳感器;(b)壓阻式傳感器(0~0.5 MPa);(c)壓阻式傳感器(0~20 MPa)

    Figure  4.  Physical charts of the two sensors: (a) PVDF neurofibril film piezoelectric sensor; (b) piezoresistive sensor (0–0.5 MPa); (c) piezoresistive sensor (0–20 MPa)

    圖  5  VIB-1204F數據采集儀

    Figure  5.  VIB-1204F data acquisition instrument

    圖  6  爆炸沖擊波“壓力?時間”曲線。(a)空氣不耦合爆破;(b)水壓爆破

    Figure  6.  Pressure?time curve of blasting shock wave: (a) air uncoupling charge blasting; (b) hydraulic blasting

    圖  7  波的入射、反射與透射

    Figure  7.  Incident, reflection and transmission of waves

    圖  8  準靜態壓力取值大小。(a)空氣不耦合爆破;(b)水壓爆破

    Figure  8.  Value of measuring quasi-static pressure: (a) air uncoupling charge blasting; (b) hydraulic blasting

    圖  9  不同裝藥量條件下,準靜態壓力下降段擬合曲線.空氣不耦合爆破。(a)150 mg;(b)200 mg;(c)250 mg; 水壓爆破:(d)150 mg;(e)200 mg;(f)250 mg

    Figure  9.  Quasi-static pressure drop fitting curve under different charge quantity conditions: air uncoupling charge blasting: (a) 150 mg, (b) 200 mg, (c) 250 mg; hydraulic blasting: (d) 150 mg, (e) 200 mg, (f) 250 mg

    圖  10  裂縫細節圖[18]。(a)縫槽空氣不耦合爆破;(b)縫槽水壓爆破

    Figure  10.  Fracture details[18]: (a) slot air uncoupling charge blasting; (b) slot-hydraulic blasting

    表  1  炸藥成分和配比(質量分數)

    Table  1.   Explosive composition and ration %

    SulfurPotassium nitrateCharcoal powder
    21.0534.5847.34
    下載: 導出CSV

    表  2  實驗組設置

    Table  2.   Settings of the experimental group

    Uncoupling mediumCharge weight /mgExperimental number
    Air150#1-1, #1-2
    200#2-1, #2-2
    250#3-1, #3-2
    Water150#4-1, #4-2
    200#5-1, #5-2
    250#6-1, #6-2
    下載: 導出CSV

    表  3  沖擊壓力數據關鍵點坐標

    Table  3.   Key point coordinates of shock pressure data

    Experimental numberStart pointPeak point
    Time/msStress/MPaTime/msStress/MPa
    #1-1349.14540349.39098.27
    #2-1318.3680318.64827.96
    #3-1317.66060317.87428.05
    #4-1587.0090590.2753293.18
    #5-1477.97540481.1862243.30
    #6-1480.82640483.1119322.37
    下載: 導出CSV

    表  4  準靜態壓力取值

    Table  4.   Quasi-static pressure values

    Experimental numberPag/MPaPwg/MPa
    #1-20.05
    #2-20.09
    #3-20.14
    #4-22.3
    #5-23.3
    #6-25.3
    下載: 導出CSV

    表  5  準靜態壓力的測量值和理論值

    Table  5.   Measured and theoretical values of quasi-static pressure

    Charge weight/mgPag/MPaPwtg/MPaPwg/MPaPwg/PagPwtg/Pag
    1500.051.482.34629.6
    2000.093.423.336.6738
    2500.146.095.337.8643.5
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Yang R S, Zuo J J, Li Y L, et al. Experimental study of slotted cartridge explosion shock wave propagation characteristic with different cutting seam pipe material. <italic>J China Univ Min Technol</italic>, 2019, 48(2): 229

    楊仁樹, 左進京, 李永亮, 等. 不同切縫管材質下切縫藥包爆炸沖擊波傳播特性研究. 中國礦業大學學報, 2019, 48(2):229
    [2] Li Q, Yu Q, Zhu G Y, et al. Experimental study of crack propagation under two-hole slotted cartridge blasting with different amounts of charge. <italic>Chin J Rock Mech Eng</italic>, 2017, 36(9): 2205

    李清, 于強, 朱各勇, 等. 不同藥量的切縫藥包雙孔爆破裂紋擴展規律試驗. 巖石力學與工程學報, 2017, 36(9):2205
    [3] Zhu Y H, Xu X P. Damage control characteristics for notched blasting based on the damage mechanism. J China Coal Soc, 2017, 42(Suppl 2): 369

    祝云華, 徐小鵬. 基于損傷機制的切槽控制爆破特性研究. 煤炭學報, 2017, 42(增刊2): 369
    [4] Yue Z W, Guo Y, Wang X. Experimental study of crack propagation under blasting load in notched boreholes. <italic>Chin J Rock Mech Eng</italic>, 2015, 34(10): 2018

    岳中文, 郭洋, 王煦. 切槽孔爆炸載荷下裂紋擴展行為的實驗研究. 巖石力學與工程學報, 2015, 34(10):2018
    [5] Yang R S, Che Y L, Feng D K, et al. Tests for blasting vibration reduction technique with presplitting blasting of a slotted cartridge. <italic>J Vib Shock</italic>, 2014, 33(12): 7

    楊仁樹, 車玉龍, 馮棟凱, 等. 切縫藥包預裂爆破減振技術試驗研究. 振動與沖擊, 2014, 33(12):7
    [6] Xu Y, Shen Z W, Meng Y P. Investigation on dynamic expanding rule and application in notch blasting. <italic>J Univ Sci Technol China</italic>, 2003, 33(2): 184 doi: 10.3969/j.issn.0253-2778.2003.02.009

    徐穎, 沈兆武, 孟益平. 爆炸載荷作用下刻槽炮孔動態裂紋擴展規律. 中國科學技術大學學報, 2003, 33(2):184 doi: 10.3969/j.issn.0253-2778.2003.02.009
    [7] Yang R S, Su H. Experimental study on crack propagation with pre-crack under explosion load. <italic>J China Coal Soc</italic>, 2019, 44(2): 482

    楊仁樹, 蘇洪. 爆炸荷載下含預裂縫的裂紋擴展實驗研究. 煤炭學報, 2019, 44(2):482
    [8] Kang Y, Zheng D D, Su D F, et al. Model of directional shaped blasting assisted with water jet and its numerical simulation. <italic>J Vib Shock</italic>, 2015, 34(9): 182

    康勇, 鄭丹丹, 粟登峰, 等. 水射流切槽定向聚能爆破模型及數值模擬研究. 振動與沖擊, 2015, 34(9):182
    [9] Lin D Y, Ma W C, Li Z, et al. Research on the effects of bottom water cushion on long hole blasting. <italic>Chin J Rock Mech Eng</italic>, 1992, 11(2): 130

    林德余, 馬萬昌, 李忠, 等. 巖石爆破中水墊層作用的研究. 巖石力學與工程學報, 1992, 11(2):130
    [10] Sun L, Ren Q F, Zong Q. Application of water-decoupled charge in smooth blasting of coal mine rock tunnel. <italic>Blasting</italic>, 2010, 27(3): 25 doi: 10.3963/j.issn.1001-487X.2010.03.007

    孫磊, 任慶峰, 宗琦. 水不耦合裝藥結構在煤礦井巷掘進光面爆破中的應用. 爆破, 2010, 27(3):25 doi: 10.3963/j.issn.1001-487X.2010.03.007
    [11] Huang B X, Liu C Y, Fu J H, et al. Hydraulic fracturing after water pressure control blasting for increased fracturing. <italic>Int J Rock Mech Min Sci</italic>, 2011, 48(6): 976 doi: 10.1016/j.ijrmms.2011.06.004
    [12] Ma K, Chu Z, Wang K H, et al. Experimental research on bubble pulse of small scale charge exploded under simulated deep water. <italic>Explosion Shock Waves</italic>, 2015, 35(3): 320 doi: 10.11883/1001-1455-(2015)03-0320-06

    馬坤, 初哲, 王可慧, 等. 小當量炸藥深水爆炸氣泡脈動模擬實驗. 爆炸與沖擊, 2015, 35(3):320 doi: 10.11883/1001-1455-(2015)03-0320-06
    [13] Li L Z, Luo X, Zhang X Y, et al. Study on the impact of explosion charge on bubble shape in near-wall. <italic>J North Univ China Nat Sci Ed</italic>, 2019, 40(4): 336

    李立州, 羅驍, 張新燕, 等. 裝藥量對近壁面氣泡形態影響的研究. 中北大學學報: 自然科學版, 2019, 40(4):336
    [14] Cai Y L, Fu H W. Experimental study on hydraulic blasting stress wave propagation and coal broken mechanism. <italic>J China Coal Soc</italic>, 2017, 42(4): 902

    蔡永樂, 付宏偉. 水壓爆破應力波傳播及破煤巖機理實驗研究. 煤炭學報, 2017, 42(4):902
    [15] Zhu L C, Sun Y. Digging of a trench by water-coupled longhole blasting. <italic>Eng Blast</italic>, 2000, 6(2): 67 doi: 10.3969/j.issn.1006-7051.2000.02.015

    朱禮臣, 孫詠. 深孔水耦合爆破開挖溝槽. 工程爆破, 2000, 6(2):67 doi: 10.3969/j.issn.1006-7051.2000.02.015
    [16] Luo Y, Cui X R, Lu H. Study on blasting with water decoupling charging in borehole. <italic>Nonferrous Met </italic>(<italic>Mine Sect</italic>)<italic></italic>, 2009, 61(1): 46

    羅勇, 崔曉榮, 陸華. 炮孔水介質不耦合裝藥爆破的研究. 有色金屬(礦山部分), 2009, 61(1):46
    [17] Zong Q, Li Y C, Xu Y. Preliminary discussion on shock pressure on hole wall when water-couple charge blasting in the hole. <italic>Chin J Hydrodyn</italic>, 2004, 19(5): 610

    宗琦, 李永池, 徐穎. 炮孔水耦合裝藥爆破孔壁沖擊壓力研究. 水動力學研究與進展(A輯), 2004, 19(5):610
    [18] Xia B W, Liu C W, Lu Y Y, et al. Experimental study of propagation of directional fracture with slotting hydraulic blasting. <italic>J China Coal Soc</italic>, 2016, 41(2): 432

    夏彬偉, 劉承偉, 盧義玉, 等. 縫槽水壓爆破導向裂縫擴展實驗研究. 煤炭學報, 2016, 41(2):432
    [19] Zhao J C. Research on the Controlled Blasting Method under the Condition of Decoupling Charge with Two Kinds of Mediums[Dissertation]. Taiyuan: Taiyuan University of Technology, 2005

    趙金昌. 雙介質不耦合斷裂損傷控制爆破技術研究[學位論文]. 太原: 太原理工大學, 2005
    [20] Song S Z. Stress Wave in Solid Medium. Beijing: China Coal Industry Publishing House, 1989

    宋守志. 固體介質中的應力波. 北京: 煤炭工業出版社, 1989
    [21] Li Y Q, Ma S Z. Mechanics of Explosion. Beijing: Science Press, 1992

    李翼祺, 馬素貞. 爆炸力學. 北京: 科學出版社, 1992
    [22] Li K E. Seismic Acquisition and Analysis in the Area of High Velocity Shielding Layers[Dissertation]. Chengdu: Chengdu University of Technology, 2007

    李可恩. 含高速屏蔽層的地震數據采集及分析[學位論文]. 成都: 成都理工大學, 2007
    [23] Du G H, Zhu Z M, Gong X F. Acoustics Foundation. Nanjing: Nanjing University Press, 2001

    杜功煥, 朱哲民, 龔秀芬. 聲學基礎. 南京: 南京大學出版社, 2001
    [24] Anderson Jr C E, Baker W E, Wauters D K, et al. Quasi-static pressure, duration, and impulse for explosions (e.g. HE) in structures. <italic>Int J Mech Sci</italic>, 1983, 25(6): 455 doi: 10.1016/0020-7403(83)90059-0
    [25] Liu W X, Zhang D Z, Zhong F P, et al. Quasi-static gas pressure generated by explosive charge blasting in a spherical explosion containment vessel. <italic>Explos Shock Waves</italic>, 2018, 38(5): 1045 doi: 10.11883/bzycj-2017-0056

    劉文祥, 張德志, 鐘方平, 等. 球形爆炸容器內炸藥爆炸形成的準靜態氣體壓力. 爆炸與沖擊, 2018, 38(5):1045 doi: 10.11883/bzycj-2017-0056
  • 加載中
圖(10) / 表(5)
計量
  • 文章訪問數:  2558
  • HTML全文瀏覽量:  829
  • PDF下載量:  70
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-10-06
  • 刊出日期:  2020-09-20

目錄

    /

    返回文章
    返回