-
摘要: 以易控的工藝條件為基礎,通過設計簡易實驗裝置來模擬鋯合金在實際生產中的張力退火過程。采用X射線衍射(XRD)和電子背散射(EBSD)技術,對不同溫度和不同張力下退火處理后的Zr–4合金織構和再結晶行為進行研究。結果表明,施加外加應力和提高退火溫度可顯著改變再結晶織構演化過程。隨著外加應力值的增加以及退火溫度的升高,鋯合金的主要織構(
$\overline 1 2\overline 1 5$ )[$ 10 \overline 1 0$ ]總量減少,極密度減弱,從而導致材料各向異性減小;外加應力和退火溫度對材料再結晶過程中小角度晶界數量以及再結晶比例產生了顯著影響,隨著外加應力的增加以及退火溫度的升高,材料內部發生動態回復和再結晶,位錯和亞結構逐漸消失,材料再結晶過程中的小角度晶界數量明顯減少,材料的再結晶過程加快,材料的再結晶比例顯著提高。外加應力的施加以及退火溫度的升高均有利于材料內部再結晶過程的加速進行。研究結果對Zr–4合金退火處理優化有指導作用,為解決鋯合金在工程應用中所遇到的問題提供了科學基礎。Abstract: The texture of Zr–4 alloy not only affects its irradiation growth performance, but also affects mechanical properties, stress corrosion cracking, and water-side corrosion. Therefore, it is important to control the texture of Zr–4 alloy during processing. The effect of the applied external stress, annealing temperature, and annealing time on texture evolution and recrystallization of Zr–4 alloy is still unclear. Based on controllable process conditions, the stress annealing process of zirconium alloy in practical production was simulated by designing a simple experimental device. The texture and recrystallization behavior of Zr–4 alloy after annealing at different temperatures and stresses were studied by X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) techniques. The results show that applying external stress and increasing annealing temperature significantly change the evolution of recrystallized texture. With an increase in stress and annealing temperature, the texture of the zirconium alloy ($\overline 1 2\overline 1 5$ )[$10 \overline 1 0$ ], and the polar density decreases, thereby resulting in a decrease in material anisotropy. The annealing temperature has a significant effect on the amount of small-angle grain boundary and recrystallization ratio during material recrystallization. With an increase in applied stress and annealing temperature, dynamic recovery and recrystallization occur inside the material. The sub-structures in dynamic recovery and the dislocation sub-structures in the grains that undergo dynamic recrystallization gradually disappear. The small-angle grain boundary in the material recrystallization process is reduced significantly. The process is accelerated and the recrystallization ratio of the material is significantly increased. The application of applied external stress and the increase of annealing temperature are beneficial to the acceleration of the internal recrystallization process of the material. The main results from this paper can guide the optimization of annealing treatment of Zr–4 alloy, and provide a scientific basis for solving the problems encountered in the engineering application of Zr–4 alloy.-
Key words:
- Zr–4 alloy /
- annealing /
- stress /
- texture /
- recrystallization
-
圖 3 應力退火處理后Zr–4板材取向分布函數。(a)冷軋態;(b)580 ℃,0 MPa;(c)580 ℃,3 MPa;(d)580 ℃,9 MPa;(e)610 ℃,0 MPa;(f)610 ℃,3 MPa;(g)610 ℃,9 MPa;(h)640 ℃,0 MPa;(i)640 ℃,3 MPa;(j)640 ℃,9 MPa;(k)重要取向
Figure 3. Orientation distribution function of Zr–4 sheet after stress annealing: (a) cold rolled sheet; (b) 580 ℃, 0 MPa; (c) 580 ℃, 3 MPa; (d) 580 ℃, 9 MPa; (e) 610 ℃, 0 MPa; (f) 610 ℃, 3 MPa; (g) 610 ℃, 9 MPa; (h) 640 ℃, 0 MPa; (i) 640 ℃, 3 MPa;(j)640 ℃, 9 MPa; (k) important orientation position
圖 6 不同應力退火處理后Zr–4板材取向成像圖。(a) 冷軋態;(b) 580 ℃,0 MPa;(c) 580 ℃,3 MPa;(d) 580 ℃,9 MPa;(e) 610 ℃,0 MPa;(f) 610 ℃,3 MPa;(g) 610 ℃,9 MPa;(h) 640 ℃,0 MPa;(i) 640 ℃,3 MPa;(j)640 ℃,9 MPa
Figure 6. Orientation imaging of the Zr–4 sheet after different stress annealing treatments: (a) cold rolled sheet; (b) 580 ℃, 0 MPa;(c) 580 ℃, 3 MPa; (d) 580 ℃, 9 MPa; (e) 610 ℃, 0 MPa; (f) 610 ℃, 3 MPa; (g) 610 ℃, 9 MPa;(h) 640 ℃, 0 MPa; (i) 640 ℃, 3 MPa; (j) 640 ℃, 9 MPa
圖 7 不同應力退火處理后Zr–4板材再結晶晶粒尺寸分布圖。(a)冷軋態;(b)580 ℃,0 MPa;(c)580 ℃,3 MPa;(d)580 ℃,9 MPa;(e)610 ℃,0 MPa;(f)610 ℃,3 MPa;(g)610 ℃,9 MPa;(h)640 ℃,0 MPa;(i)640 ℃,3 MPa;(j)640 ℃,9 MPa
Figure 7. Recrystallization grain size distribution of Zr–4 plate after different stress annealing treatments: (a) cold rolled sheet; (b) 580 ℃, 0 MPa; (c) 580 ℃, 3 MPa; (d) 580 ℃, 9 MPa; (e) 610 ℃, 0 MPa; (f) 610 ℃, 3 MPa; (g) 610 ℃, 9 MPa; (h) 640 ℃, 0 MPa; (i) 640 ℃, 3 MPa; (j) 640 ℃, 9 MPa
圖 8 不同應力退火處理后Zr–4板材取向差分布圖。(a)冷軋態;(b) 580 ℃,0 MPa;(c) 580 ℃,3 MPa;(d) 580 ℃,9 MPa;(e) 610 ℃,0 MPa;(f)610 ℃,3 MPa;(g) 610 ℃,9 MPa;(h) 640 ℃,0 MPa;(i) 640 ℃,3 MPa;(j) 640 ℃,9 MPa
Figure 8. Zr–4 plate orientation difference distributions after different stress annealing treatments: (a) cold rolled sheet; (b) 580 ℃, 0 MPa; (c) 580 ℃, 3 MPa; (d) 580 ℃, 9 MPa; (e) 610 ℃, 0 MPa; (f) 610 ℃, 3 MPa; (g) 610 ℃, 9 MPa; (h) 640 ℃, 0 MPa; (i) 640 ℃, 3 MPa; (j) 640 ℃, 9 MPa
表 1 實驗參數
Table 1. Experimental parameters
Annealing temperature/℃ Holding time/min External stress/MPa 580 3 0 580 3 3 580 6 3 580 3 9 610 3 0 610 3 3 610 3 9 640 3 0 640 3 3 640 3 9 表 2 不同應力退火處理后其小角度晶界比例統計結果
Table 2. Statistics of the proportion of small-angle grain boundaries after different stress annealing treatments
Annealing temperature/℃ External stress/MPa Small angle grain boundary ratio/% Rolled sheet 0 68 580 3 49 580 3 46 580 6 38 610 3 40 610 3 31 610 3 17 640 3 22 640 3 21 640 3 14 259luxu-164 -
參考文獻
[1] Wang L X, Zhang X Y, Xue X Y, et al. Study on the microstructure and texture of zirconium alloy tube. <italic>Rare Met Mater Eng</italic>, 2013, 42(1): 153 doi: 10.3969/j.issn.1002-185X.2013.01.031王麗霞, 張喜燕, 薛祥義, 等. 鋯合金擠壓管坯的組織及織構研究. 稀有金屬材料與工程, 2013, 42(1):153 doi: 10.3969/j.issn.1002-185X.2013.01.031 [2] Ni J, Zhao Y C, Wang L, et al. Microstructure of Zircaloy–4 alloy during β phase quenching and determination of critical quenching diameter of its rods. <italic>Nucl Mater Energy</italic>, 2018, 17: 158 doi: 10.1016/j.nme.2018.10.014 [3] Zhang Y, Zhang C, Yuan G H, et al. Effect of second phase particles on the hydrogen absorption properties of Zr–Sn–Nb zirconium alloys. <italic>Rare Met Mater Eng</italic>, 2019, 48(8): 2507張寅, 張誠, 袁改煥, 等. 第二相對Zr–Sn–Nb系鋯合金吸氫性能的影響. 稀有金屬材料與工程, 2019, 48(8):2507 [4] Ni J, Wang L, Zhang Z H, et al. Interfacial heat transfer behavior between Zr–4 alloy and H13 die Steel. <italic>Rare Met Mater Eng</italic>, 2019, 48(5): 1579倪嘉, 王練, 張志豪, 等. Zr–4合金與H13模具鋼的界面換熱行為研究. 稀有金屬材料與工程, 2019, 48(5):1579 [5] Zhao Y C, Zhu G W, Qi P, et al. Measurement of friction factor in plastic forming of Zr–4 alloy based on ring compression and extrusion-simulation. <italic>Chin J Eng</italic>, 2020, 42(02): 209趙乙丞, 朱廣偉, 齊鵬, 等. 基于圓環壓縮和擠壓–模擬法的Zr–4合金塑性成形摩擦因子測定. 工程科學學報, 2020, 42(02):209 [6] Li M H, Wang X. The deformation mechanism of zirconium alloy and evolution discipline of its alloys plates texture. <italic>Titanium Ind Prog</italic>, 2012, 29(6): 6李麥海, 王興. 鋯合金變形機理及其板材織構演化規律. 鈦工業進展, 2012, 29(6):6 [7] Wang Y N, Huang J C. Texture analysis in hexagonal materials. <italic>Mater Chem Phys</italic>, 2003, 81(1): 11 doi: 10.1016/S0254-0584(03)00168-8 [8] Liu C Z, Li G P, Chu L H, et al. Texture and yielding anisotropy of zircaloy–4 alloy cladding tube produced by cold pilger rolling and annealing. <italic>Mater Sci Eng A</italic>, 2018, 719: 147 doi: 10.1016/j.msea.2018.02.043 [9] Xu B, Yu J H, Sun G C, et al. Influence of Process for Zr–4 Alloy Plate and Strip Texture. <italic>Met World</italic>, 2017(04): 28 doi: 10.3969/j.issn.1000-6826.2017.04.06徐濱, 于軍輝, 孫國成, 等. 影響Zr–4合金板帶材織構的工藝因素. 金屬世界, 2017(04):28 doi: 10.3969/j.issn.1000-6826.2017.04.06 [10] Peng Q, Shen B L. Texture of zirconium alloy and its effects on properties. <italic>Chin J Rare Met</italic>, 2005, 29(6): 903 doi: 10.3969/j.issn.0258-7076.2005.06.021彭倩, 沈保羅. 鋯合金的織構及其對性能的影響. 稀有金屬, 2005, 29(6):903 doi: 10.3969/j.issn.0258-7076.2005.06.021 [11] Wu Y, Yao X N, Tian F, et al. Effect of rolling technology on texture orientation and corrosion performance of Zr–4 zirconium alloy strips. <italic>Rare Met Mater Eng</italic>, 2012, 41(12): 2238 doi: 10.3969/j.issn.1002-185X.2012.12.036武宇, 姚修楠, 田鋒, 等. 軋制工藝對Zr–4合金帶材織構取向及腐蝕性能的影響. 稀有金屬材料與工程, 2012, 41(12):2238 doi: 10.3969/j.issn.1002-185X.2012.12.036 [12] Zhao L K, Li X N, Yue Q, et al. Effect of processing technology on microstructure of Zr–4 alloy hot rolled plates. <italic>Hot Working Technol</italic>, 2018, 47(17): 36趙林科, 李小寧, 岳強, 等. 加工工藝對Zr–4合金熱軋板材微觀組織的影響. 熱加工工藝, 2018, 47(17):36 [13] Fuloria D, Kumar N, Jayaganthan R, et al. Microstructural and textural characterization of Zircaloy–4 processed by rolling at different temperatures. <italic>Mater Charact</italic>, 2017, 127: 296 doi: 10.1016/j.matchar.2017.02.020 [14] Wang W G, Zhou B X. Texture controlling of zircaloy plate. <italic>Nucl Power Eng</italic>, 1994, 15(2): 158王衛國, 周邦新. 鋯合金板織構的控制. 核動力工程, 1994, 15(2):158 [15] Wang W G, Zhou B X. Effect of rolling temperature on the textures of Zircaloy–4 plate. <italic>Nucl Power Eng</italic>, 1996, 17(3): 255王衛國, 周邦新. 軋制溫度對Zr–4合金板織構的影響. 核動力工程, 1996, 17(3):255 [16] Li X N, Wang K S, Yu J H, et al. Effects of finishing annealing temperature on deformation texture and mechanical properties of Zr–4 zirconium alloy tube. <italic>Rare Met Cemented Carbides</italic>, 2018, 46(4): 73李小寧, 王塊社, 于軍輝, 等. 成品退火溫度對Zr–4鋯合金管材變形織構和力學性能的影響. 稀有金屬與硬質合金, 2018, 46(4):73 [17] Zeng Q H, Luan B F, Chapuis A, et al. Evolution of crystallographic texture of zirconium alloy during hot deformation. <italic>Rare Met Mater Eng</italic>, 2019, 48(8): 2393 [18] Saintoyant L, Legras L, Brechet Y. E?ect of an applied stress on the recrystallization mechanisms of a zirconium alloy. <italic>Scripta Mater</italic>, 2011, 64(5): 418 doi: 10.1016/j.scriptamat.2010.11.003 [19] Bhaumik S, Molodova X, Gottstein G. Effect of stress on the annealing behavior of severely plastically deformed aluminum alloy 3103. <italic>Mater Sci Eng A</italic>, 2010, 527(21-22): 5826 doi: 10.1016/j.msea.2010.05.053 [20] Zeng Q H. Microstructure and Texture Evolution during Hot Compression of Zirconium Alloy with Different Initial Orientation[Dissertation]. Chongqing: Chongqing University, 2018曾慶輝. 初始取向對鋯合金熱壓縮變形微觀組織及織構演變的影響[學位論文]. 重慶: 重慶大學, 2018 [21] Jiang Y B. Applied Fundamental Research of the High-density Electropulsing on the Manufacturing of AZ91 Magnesium Alloy Strip[Dissertation]. Beijing: Tsinghua University, 2010姜雁斌. 高能電脈沖在制備AZ91 鎂合金中的應用基礎研究[學位論文]. 北京: 清華大學, 2010 [22] Mao W M, Yang P, Chen L. Material Texture Analysis Principle and Detection Technology. Beijing: Metallurgical Industry Press, 2007毛衛民, 楊平, 陳冷. 材料織構分析原理與檢測技術. 北京: 冶金工業出版社, 2007 [23] Chen X. Microstructure and Texture Evolution of Zr–4 Alloy in Deformation and Subsequent Annealing[Dissertation]. Chongqing: Chongqing University, 2018陳欣. Zr–4 合金變形及退火過程中組織與織構演變[學位論文]. 重慶: 重慶大學, 2018 [24] He W J, Chapuis A, Chen X, et al. Effect of loading direction on the deformation and annealing behavior of a zirconium alloy. <italic>Mater Sci Eng A</italic>, 2018, 734: 364 doi: 10.1016/j.msea.2018.08.013 [25] Chakravarty J K, Kapoor R, Sarkar A, et al. Dynamic recrystallization in zirconium alloys. <italic>J ASTM Int</italic>, 2010, 7(8): 1 -