<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鋅的生物浸出技術現狀及研究進展

李旭 高文成 溫建康 武彪 劉學

李旭, 高文成, 溫建康, 武彪, 劉學. 鋅的生物浸出技術現狀及研究進展[J]. 工程科學學報, 2020, 42(6): 693-703. doi: 10.13374/j.issn2095-9389.2019.09.24.001
引用本文: 李旭, 高文成, 溫建康, 武彪, 劉學. 鋅的生物浸出技術現狀及研究進展[J]. 工程科學學報, 2020, 42(6): 693-703. doi: 10.13374/j.issn2095-9389.2019.09.24.001
LI Xu, GAO Wen-cheng, WEN Jian-kang, WU Biao, LIU Xue. Technology status and research progress of zinc bioleaching[J]. Chinese Journal of Engineering, 2020, 42(6): 693-703. doi: 10.13374/j.issn2095-9389.2019.09.24.001
Citation: LI Xu, GAO Wen-cheng, WEN Jian-kang, WU Biao, LIU Xue. Technology status and research progress of zinc bioleaching[J]. Chinese Journal of Engineering, 2020, 42(6): 693-703. doi: 10.13374/j.issn2095-9389.2019.09.24.001

鋅的生物浸出技術現狀及研究進展

doi: 10.13374/j.issn2095-9389.2019.09.24.001
基金項目: 云南省科技廳重點研發計劃資助項目(2018IB027)
詳細信息
    通訊作者:

    E-mail:kang3412@126.com

  • 中圖分類號: TF18

Technology status and research progress of zinc bioleaching

More Information
  • 摘要: 鋅是現代工業所必需的有色金屬,屬于很重要的戰略資源,其在世界所有金屬產量中排名第四,僅次于鐵、鋁和銅。隨著低品位難處理鋅資源的種類和產量的不斷增加,以及濕法冶金技術的不斷發展,鋅的生物浸出技術得到了研究人員的廣泛關注,并展示出了良好的潛在應用前景。本文首先較為詳細的介紹了含鋅資源的礦物特征,并對其生物可浸性進行了分析。其次,對目前鋅的生物浸出體系,所用浸礦菌種,浸出過程所涉及的電化學、熱力學、動力學以及浸出機理進行了歸納總結;接著,對鋅的生物浸出技術現狀和工藝新進展進行了闡述。最后,展望了鋅的生物浸出工藝的發展趨勢及后續的研究熱點。研究表明高效浸鋅菌種的選育馴化、與之相匹配的工藝及裝備研發,是鋅的生物浸出當今研究熱點及未來發展方向。

     

  • 圖  1  閃鋅礦(ZnS)的晶格結構

    Figure  1.  Lattice structure of sphalerite (ZnS)

    圖  2  銅綠假單胞菌電鏡圖(a)和瓊脂平板菌落特征(b)

    Figure  2.  Electron microscopy image of Pseudomonas aeruginosa (a) and agar plate colony characteristics (b)

    圖  3  生物活性劑鼠李糖脂單糖(a)和多糖(b)分子結構

    Figure  3.  Molecular structure of the monosaccharides (a) and polysaccharides (b) of rhamnolipids as bioactive agents

    圖  4  ISR工藝示意圖

    Figure  4.  Diagram of the ISR process

    表  1  鋅的生物浸出特點

    Table  1.   Bioleaching characteristics of zinc

    TypesZinc resourcesBacterial speciesExtractantCharacteristic
    Sulfide oreSphalerite, marmatite, wurtziteInorganic acidophilic bacteriaFe3+,H2SO4Short leaching cycle and high efficiency
    Zinc-containing polymetallic
    sulfide ore
    Inorganic acidophilic bacteriaFe3+,H2SO4Selective priority leaching
    Smithsonite, zincite, sillizonite, heteropolarHeterotrophic alkaline bacteriaOrganic acidNeed external energy substrate
    Non-sulfide oreElectronic waste such as zinc-manganese batteriesInorganic acidophilic bacteria, heterotrophic alkaline bacteriaFe3+,H2SO4, Organic acidNeed external energy substrate and low efficiency
    Lead-zinc smelting slagInorganic acidophilic bacteria, heterotrophic alkaline bacteriaFe3+,H2SO4, Organic acidHigh acid consumption and high leaching rate
    Zinc-containing sludge and wastewaterInorganic acidophilic bacteria, heterotrophic alkaline bacteriaFe3+,H2SO4, Organic acidDirect decomposition of organic matter and sulfide
    下載: 導出CSV

    表  2  部分常用浸礦細菌特征

    Table  2.   Some frequently used bioleaching bacteria characteristics

    TypesBioleaching bacteriaGrowth environmentOptimum growth pH valueEnergy substanceOxidation products
    Inorganic acidophilic bacteriaAcidithiobacillus ferrooxidansAcidic2.5Fe2+,${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,S0,Sulfide oreFe3+,${\rm{SO}}_4^{2 - }$
    Leptospirillum ferrooxidansAcidic1.5?3.0Fe2+Fe3+-
    Acidimirobium ferrooxidansAcidic2.0Fe2+Fe3+
    Sulfobacillus thermosul fidooxidansAcidic2.0Fe2+,${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,S0,Sulfide oreFe3+,${\rm{SO}}_4^{2 - }$
    Acidithiobacillus thiooxidansAcidic1.5?3${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,S0,Sulfide ore
    ThioalklimicrobiumAlkaline9.5?10.0${{\rm{S}}_2}{\rm{O}}_3^{2 - }$, S0,Sulfide ore${\rm{SO}}_4^{2 - }$
    Thiobacillus novellusAlkaline7.8?9.0${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,S0,Sulfide ore${\rm{SO}}_4^{2 - }$
    ThioalkalivibrioAlkaline10.0?10.2${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,Sulfide oreS0
    Thiobacillus versutusAlkaline8.0?9.0${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,Sulfide ore${\rm{SO}}_4^{2 - }$
    Alpha proteobacteriumAlkaline8.5?8.8${{\rm{S}}_2}{\rm{O}}_3^{2 - }$,Sulfide oreS0
    Pseudomonas stutzeriAlkaline7.5?8.0Sulfide ore${\rm{SO}}_4^{2 - }$
    Heterotrophic alkaline bacteriaPseudomonas aeruginosaAlkalineC6H12O6,Sulfide oreC2H4O2、${\rm{SO}}_4^{2 - }$
    Arthrobacter oxydansAlkalineOrganic compoundC2H2O4、C3H6O3
    Microbacterium sp.AlkalineOrganic compoundC2H2O4、C6H12O7
    Bacillus megateriumAlkaline4.0?7.5Organic compoundC6H8O7
    Promicromonospora sp.AlkalineOrganic compoundC6H12O7
    下載: 導出CSV

    表  3  硫化礦物溶解的部分動力學模型[43]

    Table  3.   Partial kinetic model for the dissolution of sulfide minerals[43]

    NumberModelTypes
    1${K_{\rm{t}}} = 1 - {(1 - X)^{\frac{2}{3}}}$Hybrid control model of shrin-king core model (diffusion control; chemical reaction control)
    2${K_{\rm{t}}} = {[1 - {(1 - X)^{1/3}}]^2}$Product layer diffusion model
    3${K_{\rm{t}}} = - \ln (1 - X)$Hybrid control model (surface reaction control, sulfur layer diffusion control)
    4${K_{\rm{t}}} = 1 - \dfrac{2}{3}X - {\left( {1 - X} \right)^{{\frac{1}{3}}}}$Diffusion of porous product layer based on shrinking core model
    5${K_{\rm{t}}} = \dfrac{1}{3}\ln (1 - X) + [{(1 - X)^{ - \frac{1}{3}}} - 1]$Interface transfer and product layer diffusion
    6${K_{\rm{t}}} = 1 - 3{\left( {1 - X} \right)^{\frac{2}{3}}} + 2\left( {1 - X} \right)$Diffusion of H+ in the product layer of the shrinking core model
    7${K_{\rm{t}}} = 1 - {(1 - 0.45X)^{1/3}}$Surface chemical reaction diffusion of shrinking core model
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Shi S Y, Zhang G J, Zhao Y F, et al. Bioleaching of zinc sulfide ore. Metallic Ore Dressing Abroad, 2002(02): 12

    石紹淵, 張廣積, 趙月峰, 等. 硫化鋅礦的生物浸出. 國外金屬礦選礦, 2002(02):12
    [2] Luo R. Experimental study of W-1 inhibitor on zinc flotation of a flotation lead concentrate in Inner Mongolia. Hunan Nonferrous Met, 2018, 34(2): 15

    駱任. W-1抑制劑對內蒙古某浮選鉛精礦降鋅選礦試驗研究. 湖南有色金屬, 2018, 34(2):15
    [3] Sun Z J. Processing research refractory lead-zinc ore in Qinghai. Nonferrous Met (Miner Process Sect), 2016(5): 22

    孫志健. 青海某難選鉛鋅礦選礦試驗研究. 有色金屬(選礦部分), 2016(5):22
    [4] Liu X, Zhang Y, Wang N, et al. Pb?Zn metal resources situation and suggestion for Pb?Zn metals industry development in China. China Min Mag, 2015, 24(Suppl 1): 6

    劉曉, 張宇, 王楠, 等. 我國鉛鋅礦資源現狀及其發展對策研究. 中國礦業, 2015, 24(增刊1): 6
    [5] Wen J K. Current status and development of biometallurgy. China Nonferrous Met, 2008(10): 74

    溫建康. 生物冶金的現狀與發展. 中國有色金屬, 2008(10):74
    [6] Li G Z, Wang H J, Wu A X, et al. Research status on bioleaching of ores. Hydrometallurgy China, 2014, 33(02): 82

    李廣澤, 王洪江, 吳愛祥, 等. 生物浸礦技術研究現狀. 濕法冶金, 2014, 33(02):82
    [7] Wang J X, Luo Y M, Shen L J. Craft mineralogy research of lead-zinc ore somewhere. Hunan Nonferrous Met, 2003, 19(5): 4

    王建雄, 羅印敏, 沈立俊. 某鉛鋅礦石工藝礦物學研究. 湖南有色金屬, 2003, 19(5):4
    [8] Tong X, He J, Rao F, et al. Experimental study on activation of high iron-bearing marmatite. Min Metall Eng, 2006, 26(4): 19

    童雄, 何劍, 饒峰, 等. 云南都龍高鐵閃鋅礦的活化試驗研究. 礦冶工程, 2006, 26(4):19
    [9] Shan L J. Mineralogical study on the refractory factor of one Pb?Zn ore originated from Inner Mongolia Aobaotu and discussion on the refractory factors. Non-ferrous Min Metall, 2018, 34(5): 19

    單連軍. 內蒙古敖包吐鉛鋅礦礦石工藝礦物學研究及礦石難選因素分析. 有色礦冶, 2018, 34(5):19
    [10] Saririchi T, Azad R R, Arabian D, et al. On the optimization of sphalerite bioleaching; the inspection of intermittent irrigation, type of agglomeration, feed formulation and their interactions on the bioleaching of low-grade zinc sulfide ores. Chem Eng J, 2012, 187: 217 doi: 10.1016/j.cej.2010.10.013
    [11] Wang L, Xia J L, Zhu H R, et al. Progress on research of microbe?mineral interaction and interfacial micro-analysis. Microbiol China, 2017, 44(3): 716

    王蕾, 夏金蘭, 朱泓睿, 等. 微生物?礦物相互作用及界面顯微分析研究進展. 微生物學通報, 2017, 44(3):716
    [12] Brierley C L. Biohydrometallurgical prospects. Hydrometallurgy, 2010, 104(3-4): 324 doi: 10.1016/j.hydromet.2010.03.021
    [13] Mehrabani J V, Shafaei S Z, Noaparast M, et al. Bioleaching of sphalerite sample from Kooshk lead–zinc tailing dam. Trans Nonferrous Met Soc China, 2013, 23(12): 3763 doi: 10.1016/S1003-6326(13)62927-1
    [14] Wu B, Wen J K, Liu X, et al. A Selective Bioleaching Process for Leaching Bacteria and Low-grade Zinc Sulfide Ore: China Patent, 200810227389.8. 2008-11-27

    武彪, 溫建康, 劉學, 等. 一種浸礦菌及低品位硫化鋅礦的選擇性生物浸出工藝: 中國專利, 200810227389.8. 2008-11-27
    [15] Li S S. Study on the Resources and Utilization of Smelting Waste of Zinc[Dissertation]. Changsha: Central South University, 2012

    李珊珊. 鋅冶煉廢渣資源化利用的研究[學位論文]. 長沙: 中南大學, 2012
    [16] Sorokin D Y, Kuenen J G. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev, 2005, 29(4): 685 doi: 10.1016/j.femsre.2004.10.005
    [17] Sorokin D Y, Cherepanov A, De Vries S, et al. Identification of cytochrome c oxidase in the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium ‘Thioalcalomicrobium aerophilum’ strain AL 3. FEMS Microbiol Lett, 1999, 179(1): 91 doi: 10.1111/j.1574-6968.1999.tb08713.x
    [18] Willscher S, Bosecker K. Studies on the leaching behaviour of heterotrophic microorganisms isolated from an alkaline slag dump. Hydrometallurgy, 2003, 71(1-2): 257 doi: 10.1016/S0304-386X(03)00164-6
    [19] Xiong Y W, Wang H J, Wu A X, et al. Research status and development trend on bioleaching with alkaline microbes. Hydrometallurgy, 2012, 31(4): 199

    熊有為, 王洪江, 吳愛祥, 等. 堿性微生物浸礦研究現狀及發展趨勢. 濕法冶金, 2012, 31(4):199
    [20] Shabani M A, Irannajad M, Meshkini M, et al. Investigations on bioleaching of copper and zinc oxide ores. Trans Indian Inst Met, 2019, 72(3): 609 doi: 10.1007/s12666-018-1509-3
    [21] Cocini Y, Zhou T X, Li C G. Leaching of zinc sulfide concentrate by thermophilic acidophilic A.b. acid bacteria. Metallic Ore Dress Abroad, 2000(9): 31

    Y·科西尼, 周廷熙, 李長根. 嗜熱嗜酸A.b.酸桿菌浸出硫化鋅精礦. 國外金屬礦選礦, 2000(9):31
    [22] Li A L, Huang S T, Wen J K, et al. Research on the bioleaching of chalcopyrite from Dexing copper mine by moderate thermophiles. Met Mine, 2011(11): 78

    李啊林, 黃松濤, 溫建康, 等. 中等嗜熱菌浸出德興黃銅礦的試驗研究. 金屬礦山, 2011(11):78
    [23] Liu W F, Wang H J, Zhang X, et al. Experimental study on bioleaching of copper sulfide tailings under alkaline conditions. Min Metall Eng, 2011, 31(3): 89

    劉偉芳, 王洪江, 張旭, 等. 某硫化銅礦尾礦堿性細菌浸出試驗研究. 礦冶工程, 2011, 31(3):89
    [24] Willscher S, Bosecker K. Studies on the leaching behaviour of heterotrophic microorganisms isolated from an alkaline slag dump. Hydrometallurgy, 2003, 71(1): 257
    [25] Shabani M A, Irannajad M, Meshkini M, et al. Investigations on bioleaching of copper and zinc oxide ores. Trans Indian Inst Met, 2019, 72(3): 609 doi: 10.1007/s12666-018-1509-3
    [26] Richter C, Kalka H, Myers E, et al. Constraints of bioleaching in in-situ recovery applications. Hydrometallurgy, 2018, 178: 209 doi: 10.1016/j.hydromet.2018.04.008
    [27] Schippers A, Hedrich S, Vasters J, et al. Biomining: metal recovery from ores with microorganisms//Geobiotechnology I. Heidelberg: Springer, 2013
    [28] Fomchenko N V, Muravyov M I. Selective leaching of zinc from copper-zinc concentrate. Appl Biochem Microbiol, 2017, 53(1): 73 doi: 10.1134/S0003683817010197
    [29] Lizama H M, Fairweather M J, Dai Z, et al. How does bioleaching start? Hydrometallurgy, 2003, 69(1-3): 109 doi: 10.1016/S0304-386X(03)00028-8
    [30] Fowler T A, Crundwell F K. The role of Thiobacillus ferrooxidans, in the bacterial leaching of zinc sulphide. Process Metall, 1999, 9: 273 doi: 10.1016/S1572-4409(99)80027-3
    [31] Vera M, Schippers A, Sand W. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation—part A. Appl Microbiol Biotechnol, 2013, 97(17): 7529 doi: 10.1007/s00253-013-4954-2
    [32] Schippers A, Sand W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol, 1999, 65(1): 319 doi: 10.1128/AEM.65.1.319-321.1999
    [33] Zhao L, Wang Y, Jin L, et al. Decomposition of hydrogen sulfide in non-thermal plasma aided by supported CdS and ZnS semiconductors. Green Chem, 2013, 15(6): 1509 doi: 10.1039/c3gc00092c
    [34] Chen S, Qiu G Z, Qin W Q, et al. Bioleaching of sphalerite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans cultured in 9K medium modified with pyrrhotite. J Cent South Univ Technol, 2008, 15(04): 79
    [35] Schippers A. Biogeochemistry of metal sulfide oxidation in mining environments, sediments, and soils. Spe Paper Geolog Soc Am, 2004, 379: 49
    [36] Rohwerder T, Sand W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology, 2003, 149(7): 1699 doi: 10.1099/mic.0.26212-0
    [37] Balci N, Mayer B, Shanks Ⅲ W C, et al. Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur. Geochim Cosmochim Acta, 2012, 77: 335 doi: 10.1016/j.gca.2011.10.022
    [38] Gu G H, Sun X J, Hu K T, et al. Electrochemical oxidation behavior of pyrite bioleaching by Acidthiobacillus ferrooxidans. Trans Nonferrous Met Soc China, 2012, 22(5): 1250 doi: 10.1016/S1003-6326(11)61312-5
    [39] Jyothi N, Sudha K N, Natarajan K A. Electrochemical aspects of selective bioleaching of sphalerite and chalcopyrite from mixed sulphides. Int J Miner Process, 1989, 27(3-4): 189 doi: 10.1016/0301-7516(89)90064-1
    [40] Ahonen L, Tuovinen O H. Silver catalysis of the bacterial leaching of chalcopyrite-containing ore material in column reactors. Miner Eng, 1990, 3(5): 437 doi: 10.1016/0892-6875(90)90037-C
    [41] Lantrajin K A, Wang J. Bioleaching electrochemistry of sulfide ores. Metallic Ore Dress Abroad, 1997(2): 44

    K·A·蘭特拉金, 王軍. 硫化礦生物浸出電化學. 國外金屬礦選礦, 1997(2):44
    [42] Zhang Y J, Yang X W. Thermodynamics during bioleaching processes of sulfide-ores. Precious Met, 1998, 19(3): 26

    張英杰, 楊顯萬. 硫化礦生物浸出過程的熱力學. 貴金屬, 1998, 19(3):26
    [43] Ghassa S, Noaparast M, Shafaei S Z, et al. A study on the zinc sulfide dissolution kinetics with biological and chemical ferric reagents. Hydrometallurgy, 2017, 171: 362 doi: 10.1016/j.hydromet.2017.06.012
    [44] Coni? V T, Vujasinovi? M M R, Truji? V K, et al. Copper, zinc, and iron bioleaching from polymetallic sulphide concentrate. Trans Nonferrous Met Soc China, 2014, 24(11): 3688 doi: 10.1016/S1003-6326(14)63516-0
    [45] Zhou X L, Zheng Y, Wang S H, et al. Mechanisms of bioleaching electrochemstry-enhanced of electronic wastes. Environmentally Chemistry, 2017, 36(10): 15

    周秀麗, 鄭越, 王淑華, 等. 電子垃圾生物浸出的電化學強化機制. 環境化學, 2017, 36(10):15
    [46] Sajjad W, Zheng G D, Din G, et al. Metals extraction from sulfide ores with microorganisms: the bioleaching technology and recent developments. Trans Indian Inst Met, 2019, 72(3): 559 doi: 10.1007/s12666-018-1516-4
    [47] Kumar C G, Mamidyala S K, Sujitha P, et al. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R. Biotechnol Prog, 2012, 28(6): 1507 doi: 10.1002/btpr.1634
    [48] Pir?llo M P S, Mariano A P, Lovaglio R B, et al. Biosurfactant synthesis by Pseudomonas aeruginosa LBI isolated from a hydrocarbon-contaminated site. J Appl Microbiol, 2008, 105(5): 1484 doi: 10.1111/j.1365-2672.2008.03893.x
    [49] Diaz M A, De Ranson I U, Dorta B, et al. Metal removal from contaminated soils through bioleaching with oxidizing bacteria and rhamnolipid biosurfactants. Soil Sediment Contamin Int J, 2015, 24(1): 16 doi: 10.1080/15320383.2014.907239
    [50] Yang Z H, Zhang Z, Chai L Y, et al. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. J Hazard Mater, 2016, 301: 145 doi: 10.1016/j.jhazmat.2015.08.047
    [51] Zhu Y, Zeng G M, Zhang P Y, et al. Feasibility of bioleaching combined with Fenton-like reaction to remove heavy metals from sewage sludge. Bioresour Technol, 2013, 142: 530 doi: 10.1016/j.biortech.2013.05.070
    [52] Charikinya E, Bradshaw S, Becker M. Characterising and quantifying microwave induced damage in coarse sphalerite ore particles. Miner Eng, 2015, 82: 14 doi: 10.1016/j.mineng.2015.07.020
    [53] Natarajan G, Ting Y P. Gold biorecovery from e-waste: an improved strategy through spent medium leaching with pH modification. Chemosphere, 2015, 136: 232 doi: 10.1016/j.chemosphere.2015.05.046
    [54] Niu Z R, Li T, Su C, et al. Preparation of Mn-Zn ferrite from spent Zn?Mn batteries using bioleaching liquor as precursor. Acta Sci Circum, 2017, 37(9): 3356

    牛志睿, 李彤, 蘇沉, 等. 廢舊鋅錳電池生物淋濾-水熱法制備納米錳鋅鐵氧體. 環境科學學報, 2017, 37(9):3356
    [55] Kaksonen A H, Perrot F, Morris C, et al. Evaluation of submerged bio-oxidation concept for refractory gold ores. Hydrometallurgy, 2014, 141: 117 doi: 10.1016/j.hydromet.2013.10.012
    [56] Haschke M, Ahmadian J, Zeidler L, et al. In-situ recovery of critical technology elements. Procedia Eng, 2016, 138: 248 doi: 10.1016/j.proeng.2016.02.082
    [57] Pakostova E, Grail B M, Johnson D B. Indirect oxidative bioleaching of a polymetallic black schist sulfide ore. Miner Eng, 2017, 106: 102 doi: 10.1016/j.mineng.2016.08.028
    [58] Sun J Z, Chen B W, Wen J K, et al. Application and research progresses of hydrometallurgy technology for nickel ore. Chin J Nonferrous Met, 2018, 28(2): 356 doi: 10.1016/S1003-6326(18)64669-2

    孫建之, 陳勃偉, 溫建康, 等. 鎳礦濕法冶金技術應用進展及研究展望. 中國有色金屬學報, 2018, 28(2):356 doi: 10.1016/S1003-6326(18)64669-2
    [59] Riekkola-Vanhanen M. Talvivaara Sotkamo mine—bioleaching of a polymetallic nickel ore in subarctic climate. Nova Biotechnol, 2010, 10(1): 7
    [60] Fu K B, Ning Y, Wang J M, et al. Recovering copper and zinc from bioleaching lixivium of Liwu Copper Mine tailings by process of solvent extraction-precipitation. J Southwest Univ Sci Technol, 2017, 32(1): 10

    傅開彬, 寧燕, 王進明, 等. 四川里伍銅礦尾礦生物浸出液中回收銅、鋅的研究. 西南科技大學學報, 2017, 32(1):10
    [61] Sun C Y, Zhou J W, Jia M X, et al. Research on genetic mineral processing engineering. Nonferrous Met (Miner Process Sect), 2018(1): 1

    孫傳堯,周俊武,賈木欣,等. 基因礦物加工工程研究. 有色金屬(選礦部分), 2018(1):1
  • 加載中
圖(4) / 表(3)
計量
  • 文章訪問數:  3147
  • HTML全文瀏覽量:  1351
  • PDF下載量:  68
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-09-24
  • 刊出日期:  2020-06-01

目錄

    /

    返回文章
    返回