-
摘要: 研究了微波加熱條件下(500~800 ℃),AlCl3氯化釩渣中有價金屬Fe、Mn、V和Cr變溫動力學。通過X射線衍射和掃描電鏡能譜表征了氯化產物隨時間的物相演變和形貌變化,考察了AlCl3/釩渣的質量比和熔鹽配比對氯化提取率的影響。結果表明,AlCl3/釩渣的質量比為1.5、(NaCl-KCl)/AlCl3熔鹽質量比為1.66∶1時Fe、Mn、V和Cr的提取率最佳,分別為91.66%、92.96%、82.67%、75.82%和63.14%,微波加熱30 min,5種元素的提取率達到或者超過常規加熱方式6 h的氯化提取效果。通過熱力學和動力學分析,橄欖石相優先于尖晶石相發生氯化反應。而且V和Cr的氯化反應速度小于Fe和Mn。Fe和Mn氯化過程為擴散控制,其非等溫擴散活化能為17.02和17.10 kJ·mol?1, V和Cr在氯化過程中的限制性環節為界面化學反應,其表觀活化能分別為40.00和50.92 kJ·mol?1;微波與熔鹽耦合強化氯化反應的機理可以描述為擴散作用增強和局部化學反應增強。Abstract: Microwave heating was used in this study to chlorinate the extraction of Fe, Mn, V, and Cr from vanadium slag using AlCl3 molten salt at a temperature range from 500 to 800 °C. Microwave heating chlorination kinetics was studied in a non-isothermal mode. The effects of the AlCl3/vanadium slag mass ratio and molten salt ratio on the extraction rate of chlorination peoducts were investigated. The structure and morphology evolution of microwave heating chlorination products were characterized by X-ray diffraction and scanning electron microscope with energy dispersive spectrometer. The results show that the highest extraction rate of the five elements (Fe, Mn, V, Cr, and Ti) can be achieved as 91.66%, 92.96%, 82.67%, 75.82% and 63.14%, when the mass ratios of AlCl3/vanadium slag and NaCl–KCl/AlCl3 are 1.5 and 1.66, respectively. These extraction rates in the microwave heating mode for 30 min are reached and exceeded by 6 h in the conventional heating method. Microwave heating will minimize the chlorination time and reduce the volatilization of AlCl3. Based on the thermodynamics and kinetic analysis, the different phases of vanadium slag can be chlorinated using AlCl3 in the range from 400 to 800 °C, and the olivine phase is superior to the spinel phase in chlorination. In addition, the chlorination rates of V and Cr are slower than those of Fe and Mn, and increasing the reaction time is advantageous for the chlorination of V and Cr. The chlorination of Fe and Mn is controlled by diffusion, and the non-isothermal diffusion activation energies of Fe and Mn are 17.02 and 17.10 kJ·mol?1, respectively. In contrast, the chlorination of V and Cr is limited in the interfacial chemical reaction step, for whom the activation energies give 40.00 and 50.92 kJ·mol?1, respectively. The combination effect of the microwave and molten salt on the chlorinating vanadium slag can be attributed to the enhancement of the diffusion and local chemical reaction.
-
Key words:
- vanadium slag /
- microwave heating /
- molten salt /
- non-isothermal kinetics /
- enhanced diffusion
-
圖 9
${\rm{ln}}\dfrac{{1 - 3{{\left( {1 - x} \right)}^{{2 / 3}}} + 2\left( {1 - x} \right)}}{{{T^2}}}$ (a)和${\rm{ln}}\dfrac{{1 - {{\left( {1 - x} \right)}^{{1 / 3}}}}}{{{T^{1.92}}}}$ (b)與1/T的關系Figure 9. Relationship between
${\rm{ln}}\dfrac{{1 - 3{{\left( {1 - x} \right)}^{{2 / 3}}} + 2\left( {1 - x} \right)}}{{{T^2}}}$ (a) and${\rm{ln}}\dfrac{{1 - {{\left( {1 - x} \right)}^{{1 / 3}}}}}{{{T^{1.92}}}}$ (b) with 1/T表 1 釩渣的化學組成 (質量分數)
Table 1. Chemical composition of the V-slag
% V2O3 Cr2O3 MnO FeO TiO2 SiO2 Al2O3 MgO CaO 9.17 1.78 5.20 37.69 10.40 21.23 7.46 3.47 3.60 表 2 不同熔鹽配比的有價金屬提取率
Table 2. Valuable metal extraction rate of different molten salt ratios
Heating temperature/
℃Holding time/
minMolten salt
ratioValuable metal extraction
rate /%V Cr Mn Fe 600 30 A 3.7 12.1 64.7 59.0 B 24.4 14.9 59.9 60.6 C 30.6 24.7 64.0 59.1 900 30 A 74.2 68.1 88.1 89.5 B 80.7 73.4 87.5 89.0 C 88.5 78.7 97.7 96.3 表 3 微波加熱不同時間氯化產物中有價金屬的提取率
Table 3. Chlorination rate of valuable metals in samples by microwave heating for various time
Reaction
time /sReaction temperature/
℃Valuable metal extraction rate /% V Cr Mn Fe 350 507.9 2.3 1.9 49.2 46.0 400 577.3 5.5 5.0 59.4 56.1 450 635.7 8.0 10.2 65.5 59.5 500 686.3 15.1 11.1 73.4 68.1 550 728.5 18.9 21.1 77.5 72.2 600 765.4 18.0 22.6 78.7 74.9 表 4 動力學方程的相關系數
Table 4. Correlation coefficient of the kinetic equation
Kinetic equations V Cr Mn Fe Eq.(12) 0.9126 0.9344 0.5684 0.6423 Eq.(13) 0.9360 0.9458 0.9024 0.9600 Eq.(14) 0.9462 0.9672 0.3587 0.6956 259luxu-164 -
參考文獻
[1] Liu S Q. Production status and development trend of vanadium product in world in recent years. <italic>Iron Steel Van Tit</italic>, 2014, 35(3): 55 doi: 10.7513/j.issn.1004-7638.2014.03.013劉淑清. 近年全球釩制品生產現狀及發展趨勢. 鋼鐵釩鈦, 2014, 35(3):55 doi: 10.7513/j.issn.1004-7638.2014.03.013 [2] Liu B, Du H, Wang S N, et al. A novel method to extract vanadium and chromium from vanadium slag using molten NaOH-NaNO<sub>3</sub> binary system. <italic>AIChE J</italic>, 2013, 59(2): 541 doi: 10.1002/aic.13819 [3] Guo X, Wang L, Zheng K H, et al. Research progress of extraction technology for vanadium from vanadium stags. China Min Mag, 2016, 25(Suppl 1): 435郭昕, 王玲, 鄭康豪, 等. 釩渣提釩工藝及研究進展. 中國礦業, 2016, 25(增刊1): 435 [4] Fang H X, Li H Y, Xie B. Effective chromium extraction from chromium-containing vanadium slag by sodium roasting and water leaching. <italic>ISIJ Int</italic>, 2012, 52(11): 1958 doi: 10.2355/isijinternational.52.1958 [5] Lu G Z, Zhang T A, Zhang G Q, et al. Process and kinetic assessment of vanadium extraction from vanadium slag using calcification roasting and sodium carbonate leaching. <italic>JOM</italic>, 2019, 71(9): 4600 [6] Li X S, Xie B, Wang G E, et al. Oxidation process of low-grade vanadium slag in presence of Na<sub>2</sub>CO<sub>3</sub>. <italic>Trans Nonferrous Met Soc China</italic>, 2011, 21(8): 1860 doi: 10.1016/S1003-6326(11)60942-4 [7] Fan C L, Zhai X J, Fu Y, et al. Extraction of nickel and cobalt from reduced limonitic laterite using a selective chlorination–water leaching process. <italic>Hydrometallurgy</italic>, 2010, 105(1-2): 191 doi: 10.1016/j.hydromet.2010.08.003 [8] Abbasalizadeh A, Seetharaman S, Teng L D, et al. Highlights of the salt extraction process. <italic>JOM</italic>, 2013, 65(11): 1552 doi: 10.1007/s11837-013-0752-7 [9] Liu S Y, Wang L J, Chou K. A novel process for simultaneous extraction of iron, vanadium, manganese, chromium, and titanium from vanadium slag by molten salt electrolysis. <italic>Ind Eng Chem Res</italic>, 2016, 55(50): 12962 doi: 10.1021/acs.iecr.6b03682 [10] Liu S Y, Li S J, Wu S, et al. A novel method for vanadium slag comprehensive utilization to synthesize Zn–Mn ferrite and Fe–V–Cr alloy. <italic>J Hazard Mater</italic>, 2018, 354: 99 doi: 10.1016/j.jhazmat.2018.04.061 [11] Jones D A, Lelyveld T P, Mavrofidis S D, et al. Microwave heating applications in environmental engineering—a review. <italic>Resources Conserv Recycl</italic>, 2002, 34(2): 75 doi: 10.1016/S0921-3449(01)00088-X [12] De La Hoz A, Diaz-Ortiz A, Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. <italic>Chem Soc Rev</italic>, 2005, 34(2): 164 doi: 10.1039/B411438H [13] Tong Z F, Bi S W, Yang Y H. Present situation of study on microwave heating application in metallurgy. <italic>J Mater Metall</italic>, 2004, 3(2): 117 doi: 10.3969/j.issn.1671-6620.2004.02.008佟志芳, 畢詩文, 楊毅宏. 微波加熱在冶金領域中應用研究現狀. 材料與冶金學報, 2004, 3(2):117 doi: 10.3969/j.issn.1671-6620.2004.02.008 [14] De Castro E R, Mourao M B, Jermolovicius L A, et al. Carbothermal reduction of iron ore applying microwave energy. <italic>Steel Res Int</italic>, 2012, 83(2): 131 doi: 10.1002/srin.201100186 [15] Al-Harahsheh M, Kingman S W. Microwave-assisted leaching—a review. <italic>Hydrometallurgy</italic>, 2004, 73(3-4): 189 doi: 10.1016/j.hydromet.2003.10.006 [16] Kingman S W, Jackson K, Bradshaw S M, et al. An investigation into the influence of microwave treatment on mineral ore comminution. <italic>Powder Technol</italic>, 2004, 146(3): 176 doi: 10.1016/j.powtec.2004.08.006 [17] Sahoo B K, De S, Meikap B C. Improvement of grinding characteristics of Indian coal by microwave pre-treatment. <italic>Fuel Process Technol</italic>, 2011, 92(10): 1920 doi: 10.1016/j.fuproc.2011.05.012 [18] Hao H, Liu H X, Liu Y, et al. Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> template synthesised by microwave assisted molten salt method. <italic>Mater Res Innovations</italic>, 2007, 11(4): 185 doi: 10.1179/143307507X246602 [19] Huang Z, Deng X G, Liu J H, et al. Preparation of CaZrO<sub>3</sub> powders by a microwave-assisted molten salt method. <italic>J Ceram Soc Jpn</italic>, 2016, 124(5): 593 doi: 10.2109/jcersj2.15309 [20] Zhang G Q, Zhang T A, Lü G Z, et al. Effects of microwave roasting on the kinetics of extracting vanadium from vanadium slag. <italic>JOM</italic>, 2016, 68(2): 577 doi: 10.1007/s11837-015-1736-6 [21] Zhang X F, Liu F G, Xue X X, et al. Effects of microwave and conventional blank roasting on oxidation behavior, microstructure and surface morphology of vanadium slag with high chromium content. <italic>J Alloys Compd</italic>, 2016, 686: 356 doi: 10.1016/j.jallcom.2016.06.038 [22] Starink M J. A new method for the derivation of activation energies from experiments performed at constant heating rate. <italic>Thermochim Acta</italic>, 1996, 288(1-2): 97 doi: 10.1016/S0040-6031(96)03053-5 [23] Liu C, Peng J H, Ma A Y, et al. Study on non-isothermal kinetics of the thermal desorption of mercury from spent mercuric chloride catalyst. <italic>J Hazard Mater</italic>, 2017, 322: 325 doi: 10.1016/j.jhazmat.2016.09.063 [24] Menéndez J A, Arenillas A, Fidalgo B, et al. Microwave heating processes involving carbon materials. <italic>Fuel Process Technol</italic>, 2010, 91(1): 1 doi: 10.1016/j.fuproc.2009.08.021 [25] Liu C, Peng J H, Liu J, et al. Catalytic removal of mercury from waste carbonaceous catalyst by microwave heating. <italic>J Hazard Mater</italic>, 2018, 358: 198 doi: 10.1016/j.jhazmat.2018.06.065 -