<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

微波場下的釩渣氯化動力學

譚博 王麗君 閆柏軍 周國治

譚博, 王麗君, 閆柏軍, 周國治. 微波場下的釩渣氯化動力學[J]. 工程科學學報, 2020, 42(9): 1157-1164. doi: 10.13374/j.issn2095-9389.2019.09.20.003
引用本文: 譚博, 王麗君, 閆柏軍, 周國治. 微波場下的釩渣氯化動力學[J]. 工程科學學報, 2020, 42(9): 1157-1164. doi: 10.13374/j.issn2095-9389.2019.09.20.003
TAN Bo, WANG Li-jun, YAN Bai-jun, CHOU Kuo-chih. Kinetics of chlorination of vanadium slag by microwave heating[J]. Chinese Journal of Engineering, 2020, 42(9): 1157-1164. doi: 10.13374/j.issn2095-9389.2019.09.20.003
Citation: TAN Bo, WANG Li-jun, YAN Bai-jun, CHOU Kuo-chih. Kinetics of chlorination of vanadium slag by microwave heating[J]. Chinese Journal of Engineering, 2020, 42(9): 1157-1164. doi: 10.13374/j.issn2095-9389.2019.09.20.003

微波場下的釩渣氯化動力學

doi: 10.13374/j.issn2095-9389.2019.09.20.003
基金項目: 國家自然科學基金資助項目(51774027,51734002)
詳細信息
    通訊作者:

    E-mail:lijunwang@ustb.edu.cn

  • 中圖分類號: TF19

Kinetics of chlorination of vanadium slag by microwave heating

More Information
  • 摘要: 研究了微波加熱條件下(500~800 ℃),AlCl3氯化釩渣中有價金屬Fe、Mn、V和Cr變溫動力學。通過X射線衍射和掃描電鏡能譜表征了氯化產物隨時間的物相演變和形貌變化,考察了AlCl3/釩渣的質量比和熔鹽配比對氯化提取率的影響。結果表明,AlCl3/釩渣的質量比為1.5、(NaCl-KCl)/AlCl3熔鹽質量比為1.66∶1時Fe、Mn、V和Cr的提取率最佳,分別為91.66%、92.96%、82.67%、75.82%和63.14%,微波加熱30 min,5種元素的提取率達到或者超過常規加熱方式6 h的氯化提取效果。通過熱力學和動力學分析,橄欖石相優先于尖晶石相發生氯化反應。而且V和Cr的氯化反應速度小于Fe和Mn。Fe和Mn氯化過程為擴散控制,其非等溫擴散活化能為17.02和17.10 kJ·mol?1, V和Cr在氯化過程中的限制性環節為界面化學反應,其表觀活化能分別為40.00和50.92 kJ·mol?1;微波與熔鹽耦合強化氯化反應的機理可以描述為擴散作用增強和局部化學反應增強。

     

  • 圖  1  原釩渣的X射線衍射圖

    Figure  1.  X-ray diffraction pattern of the original vanadium slag

    圖  2  Mobilelab-T系列微波工作站結構圖

    Figure  2.  Microwave workstation structure of the Mobilelab-T series

    1—Type-K thermocouple; 2—Temperature controller; 3—Magenetron; 4—Quartz tube; 5—Insulation material; 6—Quartz crucible

    圖  3  方程(2)~(9)中標準吉布斯自由能隨溫度變化的曲線圖(1 mol AlCl3標準化)

    Figure  3.  Plots of standard Gibbs free energy as a function of temperature in Equations (2)-(9) (normalized by 1 mol AlCl3)

    圖  4  AlCl3–KCl–NaCl三元相圖

    Figure  4.  AlCl3–KCl–NaCl phase diagram

    圖  5  AlCl3/釩渣質量比對有價金屬氯化的影響

    Figure  5.  Effect of mass ratio of AlCl3/vanadium slag on chlorination of valuable metals

    圖  6  不同氯化時間下氯化產物的X射線衍射圖。(a) 350 s;(b) 500 s;(c) 650 s;(d) 原釩渣

    Figure  6.  X-ray diffraction patterns of products with different chlorination time: (a) 350 s; (b) 500 s; (c) 650 s; (d) original vanadium slag

    圖  7  微波加熱不同時間氯化產物的掃描電鏡?能譜圖。(a) 350 s;(b) 500 s;(c) 650 s

    Figure  7.  SEM-EDS morphologies of products by microwave heating for differnet time: (a) 350 s; (b) 500 s; (c) 650 s

    圖  8  樣品升溫過程溫度/時間關系

    Figure  8.  T/t relationship of sample heating process

    圖  9  ${\rm{ln}}\dfrac{{1 - 3{{\left( {1 - x} \right)}^{{2 / 3}}} + 2\left( {1 - x} \right)}}{{{T^2}}}$(a)和 ${\rm{ln}}\dfrac{{1 - {{\left( {1 - x} \right)}^{{1 / 3}}}}}{{{T^{1.92}}}}$(b)與1/T的關系

    Figure  9.  Relationship between ${\rm{ln}}\dfrac{{1 - 3{{\left( {1 - x} \right)}^{{2 / 3}}} + 2\left( {1 - x} \right)}}{{{T^2}}}$ (a) and ${\rm{ln}}\dfrac{{1 - {{\left( {1 - x} \right)}^{{1 / 3}}}}}{{{T^{1.92}}}}$ (b) with 1/T

    表  1  釩渣的化學組成 (質量分數)

    Table  1.   Chemical composition of the V-slag %

    V2O3Cr2O3MnOFeOTiO2SiO2Al2O3MgOCaO
    9.171.785.2037.6910.4021.237.463.473.60
    下載: 導出CSV

    表  2  不同熔鹽配比的有價金屬提取率

    Table  2.   Valuable metal extraction rate of different molten salt ratios

    Heating temperature/
    Holding time/
    min
    Molten salt
    ratio
    Valuable metal extraction
    rate /%
    VCrMnFe
    60030A3.712.164.759.0
    B24.414.959.960.6
    C30.624.764.059.1
    90030A74.268.188.189.5
    B80.773.487.589.0
    C88.578.797.796.3
    下載: 導出CSV

    表  3  微波加熱不同時間氯化產物中有價金屬的提取率

    Table  3.   Chlorination rate of valuable metals in samples by microwave heating for various time

    Reaction
    time /s
    Reaction temperature/
    Valuable metal extraction rate /%
    VCrMnFe
    350507.92.31.949.246.0
    400577.35.55.059.456.1
    450635.78.010.265.559.5
    500686.315.111.173.468.1
    550728.518.921.177.572.2
    600765.418.022.678.774.9
    下載: 導出CSV

    表  4  動力學方程的相關系數

    Table  4.   Correlation coefficient of the kinetic equation

    Kinetic equationsVCrMnFe
    Eq.(12)0.91260.93440.56840.6423
    Eq.(13)0.93600.94580.90240.9600
    Eq.(14)0.94620.96720.35870.6956
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Liu S Q. Production status and development trend of vanadium product in world in recent years. <italic>Iron Steel Van Tit</italic>, 2014, 35(3): 55 doi: 10.7513/j.issn.1004-7638.2014.03.013

    劉淑清. 近年全球釩制品生產現狀及發展趨勢. 鋼鐵釩鈦, 2014, 35(3):55 doi: 10.7513/j.issn.1004-7638.2014.03.013
    [2] Liu B, Du H, Wang S N, et al. A novel method to extract vanadium and chromium from vanadium slag using molten NaOH-NaNO<sub>3</sub> binary system. <italic>AIChE J</italic>, 2013, 59(2): 541 doi: 10.1002/aic.13819
    [3] Guo X, Wang L, Zheng K H, et al. Research progress of extraction technology for vanadium from vanadium stags. China Min Mag, 2016, 25(Suppl 1): 435

    郭昕, 王玲, 鄭康豪, 等. 釩渣提釩工藝及研究進展. 中國礦業, 2016, 25(增刊1): 435
    [4] Fang H X, Li H Y, Xie B. Effective chromium extraction from chromium-containing vanadium slag by sodium roasting and water leaching. <italic>ISIJ Int</italic>, 2012, 52(11): 1958 doi: 10.2355/isijinternational.52.1958
    [5] Lu G Z, Zhang T A, Zhang G Q, et al. Process and kinetic assessment of vanadium extraction from vanadium slag using calcification roasting and sodium carbonate leaching. <italic>JOM</italic>, 2019, 71(9): 4600
    [6] Li X S, Xie B, Wang G E, et al. Oxidation process of low-grade vanadium slag in presence of Na<sub>2</sub>CO<sub>3</sub>. <italic>Trans Nonferrous Met Soc China</italic>, 2011, 21(8): 1860 doi: 10.1016/S1003-6326(11)60942-4
    [7] Fan C L, Zhai X J, Fu Y, et al. Extraction of nickel and cobalt from reduced limonitic laterite using a selective chlorination–water leaching process. <italic>Hydrometallurgy</italic>, 2010, 105(1-2): 191 doi: 10.1016/j.hydromet.2010.08.003
    [8] Abbasalizadeh A, Seetharaman S, Teng L D, et al. Highlights of the salt extraction process. <italic>JOM</italic>, 2013, 65(11): 1552 doi: 10.1007/s11837-013-0752-7
    [9] Liu S Y, Wang L J, Chou K. A novel process for simultaneous extraction of iron, vanadium, manganese, chromium, and titanium from vanadium slag by molten salt electrolysis. <italic>Ind Eng Chem Res</italic>, 2016, 55(50): 12962 doi: 10.1021/acs.iecr.6b03682
    [10] Liu S Y, Li S J, Wu S, et al. A novel method for vanadium slag comprehensive utilization to synthesize Zn–Mn ferrite and Fe–V–Cr alloy. <italic>J Hazard Mater</italic>, 2018, 354: 99 doi: 10.1016/j.jhazmat.2018.04.061
    [11] Jones D A, Lelyveld T P, Mavrofidis S D, et al. Microwave heating applications in environmental engineering—a review. <italic>Resources Conserv Recycl</italic>, 2002, 34(2): 75 doi: 10.1016/S0921-3449(01)00088-X
    [12] De La Hoz A, Diaz-Ortiz A, Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. <italic>Chem Soc Rev</italic>, 2005, 34(2): 164 doi: 10.1039/B411438H
    [13] Tong Z F, Bi S W, Yang Y H. Present situation of study on microwave heating application in metallurgy. <italic>J Mater Metall</italic>, 2004, 3(2): 117 doi: 10.3969/j.issn.1671-6620.2004.02.008

    佟志芳, 畢詩文, 楊毅宏. 微波加熱在冶金領域中應用研究現狀. 材料與冶金學報, 2004, 3(2):117 doi: 10.3969/j.issn.1671-6620.2004.02.008
    [14] De Castro E R, Mourao M B, Jermolovicius L A, et al. Carbothermal reduction of iron ore applying microwave energy. <italic>Steel Res Int</italic>, 2012, 83(2): 131 doi: 10.1002/srin.201100186
    [15] Al-Harahsheh M, Kingman S W. Microwave-assisted leaching—a review. <italic>Hydrometallurgy</italic>, 2004, 73(3-4): 189 doi: 10.1016/j.hydromet.2003.10.006
    [16] Kingman S W, Jackson K, Bradshaw S M, et al. An investigation into the influence of microwave treatment on mineral ore comminution. <italic>Powder Technol</italic>, 2004, 146(3): 176 doi: 10.1016/j.powtec.2004.08.006
    [17] Sahoo B K, De S, Meikap B C. Improvement of grinding characteristics of Indian coal by microwave pre-treatment. <italic>Fuel Process Technol</italic>, 2011, 92(10): 1920 doi: 10.1016/j.fuproc.2011.05.012
    [18] Hao H, Liu H X, Liu Y, et al. Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> template synthesised by microwave assisted molten salt method. <italic>Mater Res Innovations</italic>, 2007, 11(4): 185 doi: 10.1179/143307507X246602
    [19] Huang Z, Deng X G, Liu J H, et al. Preparation of CaZrO<sub>3</sub> powders by a microwave-assisted molten salt method. <italic>J Ceram Soc Jpn</italic>, 2016, 124(5): 593 doi: 10.2109/jcersj2.15309
    [20] Zhang G Q, Zhang T A, Lü G Z, et al. Effects of microwave roasting on the kinetics of extracting vanadium from vanadium slag. <italic>JOM</italic>, 2016, 68(2): 577 doi: 10.1007/s11837-015-1736-6
    [21] Zhang X F, Liu F G, Xue X X, et al. Effects of microwave and conventional blank roasting on oxidation behavior, microstructure and surface morphology of vanadium slag with high chromium content. <italic>J Alloys Compd</italic>, 2016, 686: 356 doi: 10.1016/j.jallcom.2016.06.038
    [22] Starink M J. A new method for the derivation of activation energies from experiments performed at constant heating rate. <italic>Thermochim Acta</italic>, 1996, 288(1-2): 97 doi: 10.1016/S0040-6031(96)03053-5
    [23] Liu C, Peng J H, Ma A Y, et al. Study on non-isothermal kinetics of the thermal desorption of mercury from spent mercuric chloride catalyst. <italic>J Hazard Mater</italic>, 2017, 322: 325 doi: 10.1016/j.jhazmat.2016.09.063
    [24] Menéndez J A, Arenillas A, Fidalgo B, et al. Microwave heating processes involving carbon materials. <italic>Fuel Process Technol</italic>, 2010, 91(1): 1 doi: 10.1016/j.fuproc.2009.08.021
    [25] Liu C, Peng J H, Liu J, et al. Catalytic removal of mercury from waste carbonaceous catalyst by microwave heating. <italic>J Hazard Mater</italic>, 2018, 358: 198 doi: 10.1016/j.jhazmat.2018.06.065
  • 加載中
圖(9) / 表(4)
計量
  • 文章訪問數:  1635
  • HTML全文瀏覽量:  824
  • PDF下載量:  40
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-09-20
  • 刊出日期:  2020-09-20

目錄

    /

    返回文章
    返回