<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Cu–(Fe–C)合金中Fe–C相的固態轉變對其摩擦磨損行為及機理的影響

任浩巖 解國良 劉新華

任浩巖, 解國良, 劉新華. Cu–(Fe–C)合金中Fe–C相的固態轉變對其摩擦磨損行為及機理的影響[J]. 工程科學學報, 2020, 42(9): 1190-1199. doi: 10.13374/j.issn2095-9389.2019.09.18.006
引用本文: 任浩巖, 解國良, 劉新華. Cu–(Fe–C)合金中Fe–C相的固態轉變對其摩擦磨損行為及機理的影響[J]. 工程科學學報, 2020, 42(9): 1190-1199. doi: 10.13374/j.issn2095-9389.2019.09.18.006
REN Hao-yan, XIE Guo-liang, LIU Xin-hua. Effect of the solid-state transition of Fe–C phase on the friction and wear behavior and mechanism of Cu–(Fe–C) alloys[J]. Chinese Journal of Engineering, 2020, 42(9): 1190-1199. doi: 10.13374/j.issn2095-9389.2019.09.18.006
Citation: REN Hao-yan, XIE Guo-liang, LIU Xin-hua. Effect of the solid-state transition of Fe–C phase on the friction and wear behavior and mechanism of Cu–(Fe–C) alloys[J]. Chinese Journal of Engineering, 2020, 42(9): 1190-1199. doi: 10.13374/j.issn2095-9389.2019.09.18.006

Cu–(Fe–C)合金中Fe–C相的固態轉變對其摩擦磨損行為及機理的影響

doi: 10.13374/j.issn2095-9389.2019.09.18.006
基金項目: 十三五國家重點研發計劃項目資助課題(2016YFB0301404)
詳細信息
    通訊作者:

    E-mail:liuxinhua@ustb.edu.cn

  • 中圖分類號: TG146.11

Effect of the solid-state transition of Fe–C phase on the friction and wear behavior and mechanism of Cu–(Fe–C) alloys

More Information
  • 摘要: 采用光學顯微鏡(OM)、掃描電子顯微鏡(SEM)、納米力學探針、力學性能測試以及室溫摩擦磨損實驗研究了Cu–(Fe–C)合金的鑄態組織、形變態組織、Fe–C相形貌、力學性能和摩擦磨損行為。結果表明,Cu–(Fe–C)合金中彌散分布著微米級和納米級的Fe–C相,其中微米級的Fe–C相在淬火和回火過程中發生了固態轉變,這種固態轉變與鋼中的馬氏體轉變和回火轉變類似。合金先在850 ℃淬火,然后在200、400和650 ℃回火,Fe–C相由針狀馬氏體逐漸向顆粒狀回火索氏體轉變,Fe–C相納米硬度分別為9.4、8、4.2和3.8 GPa,實現了對強化相硬度的控制。室溫摩擦磨損實驗結果表明,隨著回火溫度升高,合金的磨損機制逐漸由犁削向黏著磨損和大塑性變形轉變,導致合金的耐磨損性能降低。這一結論可以為通過Fe–C相的固態轉變的方法調控Cu–(Fe–C)合金的摩擦磨損性能提供參考作用。

     

  • 圖  1  Cu–Fe–C合金的鑄態組織。(a)低倍光學顯微鏡照片;(b)高倍光學顯微鏡照片;(c)晶粒細化后的組織;(d)SEM圖像

    Figure  1.  As-cast structure of Cu–Fe–C alloy: (a) low power optical microscope photos; (b) high power optical microscope photos; (c) grain refined structure; (d) SEM image

    圖  2  Cu–(Fe–C)合金熱處理后的SEM像。(a)淬火態;(b) 200 ℃回火態;(c) 400 ℃回火態;(d) 650 ℃回火態

    Figure  2.  SEM image of Cu–(Fe–C) alloy after heat treatment:(a) quenched;(b) tempered at 200 ℃;(c) tempered at 400 ℃;(d) tempered at 650 ℃

    圖  3  淬火態Cu–(Fe–C)合金DSC測試結果

    Figure  3.  DSC test result of quenched Cu–(Fe–C) alloy

    圖  4  不同回火溫度下Cu–Fe–C合金的抗拉強度和硬度

    Figure  4.  Tensile strength and hardness of Cu–Fe–C alloy at different tempering temperatures

    圖  5  不同回火溫度下Fe–C相的納米硬度

    Figure  5.  Nano-hardness of Fe–C phase at different tempering temperatures

    圖  6  不同狀態Cu–Fe–C合金拉伸斷口形貌。(a)淬火態;(b) 200 ℃回火態;(c) 400 ℃回火態;(d) 650 ℃回火態

    Figure  6.  Tensile fracture morphology of Cu–Fe–C alloys in different states:(a) quenched;(b) tempered at 200 ℃;(c) tempered at 400 ℃;(d) tempered at 650 ℃

    圖  7  不同狀態Cu–(Fe–C)合金拉伸斷口縱截面形貌。(a)淬火態;(b)200 ℃回火態;(c)400 ℃回火態;(d)650 ℃回火態

    Figure  7.  Longitudinal section morphology of tensile fracture of Cu–Fe–C alloys in different states: (a) quenched; (b) tempered at 200 ℃; (c) tempered at 400 ℃; (d) tempered at 650 ℃

    圖  8  Cu–Fe–C合金和純Cu的磨損率

    Figure  8.  Wear rate of Cu–Fe–C alloy and pure cooper

    圖  9  摩擦表面的磨痕三維形貌照片(a)、(b)和縱截面的深度輪廓曲線(c)、(d)。(a)、(c)淬火態;(b)、(d)650 ℃回火態

    Figure  9.  3-D morphology of friction surface (a) & (b) and profile of longitudinal section (c) & (d). (a), (c) quenched; (b), (d) tempered at 650 ℃

    圖  10  不同狀態合金摩擦表面形貌。(a)淬火態;(b) 200 ℃回火態;(c) 400 ℃回火態;(d) 650 ℃回火態

    Figure  10.  Friction surface morphology of alloys in different states: (a) quenched; (b) tempered at 200 ℃; (c) tempered at 400 ℃; (d) tempered at 650 ℃

    圖  11  不同狀態合金塑性變形層深度。(a)淬火態;(b) 200 ℃回火態;(c) 400 ℃回火態;(d) 650 ℃回火態

    Figure  11.  Depth of plastic deformation layer of alloys in different states: (a) quenched; (b) tempered at 200 ℃; (c) tempered at 400 ℃; (d) tempered at 650 ℃

    圖  12  不同狀態合金加工硬化層深度。(a)淬火態;(b)200 ℃回火態;(c)400 ℃回火態;(d) 650 ℃回火態

    Figure  12.  Depth of work hardening layer of alloys in different states: (a) quenched; (b) tempered at 200 ℃; (c) tempered at 400 ℃; (d) tempered at 650 ℃

    表  1  圖1(d)中1,2,3點的EDS結果

    Table  1.   EDS results of Points 1,2,3 in Fig. 1(d)

    PointElementAtomic fraction/%Mass fraction/%
    1 C 73.67 36.13
    Fe 14.43 32.90
    Cu 11.84 30.72
    2 C 17.59 4.17
    Fe 53.56 59.31
    Cu 28.86 36.52
    3 C 10.59 2.45
    Fe 80.65 86.82
    Cu 8.76 10.73
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Ren J, Cui G J, Lu Z X. Experimental study on tribological characteristics of friction plate for belt conveyor. <italic>Sci Technol Eng</italic>, 2017, 17(30): 223

    任劍, 崔功軍, 魯張祥. Cu–Fe基摩擦片摩擦磨損性能的實驗研究. 科學技術與工程, 2017, 17(30):223
    [2] Li Y W, Xiao L R, Zhang W, et al. Microstructure and mechanical properties of aluminum bronze with different Mn contents. <italic>Chin J Rare Met</italic>, 2017, 41(9): 985

    李雨蔚, 肖來榮, 章瑋, 等. 不同Mn含量的鋁青銅合金組織與性能. 稀有金屬, 2017, 41(9):985
    [3] Jiang Y L, Zhu H G. Research status of friction and wear properties of copper matrix composites. <italic>Mater Rep</italic>, 2014, 28(3): 33

    蔣婭琳, 朱和國. 銅基復合材料的摩擦磨損性能研究現狀. 材料導報, 2014, 28(3):33
    [4] ?sterle W, Prietzel C, Klo? H, et al. On the role of copper in brake friction materials. <italic>Tribol Int</italic>, 2010, 43(12): 2317 doi: 10.1016/j.triboint.2010.08.005
    [5] He B, Wang C, Lei T, et al. Study on properties of gradient layers of laser deposited TC4/TC11 gradient composite structure. <italic>Chin J Rare Met</italic>, 2014, 38(6): 1

    何波, 王晨, 雷濤, 等. 激光沉積TC4/TC11梯度復合結構各梯度層性能研究. 稀有金屬, 2014, 38(6):1
    [6] Wei Y, Wang W, Zhang Y N, et al. Synergistic enhancement of bio-tribological properties of Ti13Nb13Zr alloy by surface shot peening and Fe<sup>+</sup> implantation. <italic>Chin J Rare Met</italic>, 2020, 44(1): 48

    魏燕, 王偉, 張雁南, 等. 表面噴丸與Fe<sup>+</sup>注入協同增強Ti13Nb13Zr合金的生物摩擦學性能. 稀有金屬, 2020, 44(1):48
    [7] He D H, Manory R. A novel electrical contact material with improved self-lubrication for railway current collectors. <italic>Wear</italic>, 2001, 249(7): 626 doi: 10.1016/S0043-1648(01)00700-1
    [8] Xiao Y L, Zhang Z Y, Yao P P, et al. Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. <italic>Tribol Int</italic>, 2018, 119: 585 doi: 10.1016/j.triboint.2017.11.038
    [9] Moustafa S F, El-Badry S A, Sanad A M, et al. Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders. <italic>Wear</italic>, 2002, 253(7-8): 699 doi: 10.1016/S0043-1648(02)00038-8
    [10] Senouci A, Frene J, Zaidi H. Wear mechanism in graphite–copper electrical sliding contact. <italic>Wear</italic>, 1999, 225-229: 949 doi: 10.1016/S0043-1648(98)00412-8
    [11] Zhou H B, Yao P P, Xiao Y L, et al. Friction and wear maps of copper metal matrix composites with different iron volume content. <italic>Tribol Int</italic>, 2019, 132: 199 doi: 10.1016/j.triboint.2018.11.027
    [12] Zhang M, Wang G, Zhang L S, et al. Microstructure and properties of laser cladding Fe, Ni-based coatings on 40Cr surface. Chin J Rare Met, http://kns.cnki.net/kcms/detail/11.2111.TF.20191211.0955.001.html

    張敏, 王剛, 張立勝, 等.40Cr鋼表面激光熔覆Fe、Ni基涂層組織性能研究.稀有金屬, http://kns.cnki.net/kcms/detail/11.2111.TF.20191211.0955.001.html
    [13] Xiong X, Chen J, Yao P P, et al. Friction and wear behaviors and mechanisms of Fe and SiO<sub>2</sub> in Cu-based P/M friction materials. <italic>Wear</italic>, 2007, 262(9-10): 1182 doi: 10.1016/j.wear.2006.11.001
    [14] 劉伯威, 樊毅, 張金生, 等. SiO<sub>2</sub>和SiC 對 Cu–Fe 基燒結摩擦材料性能的影響. 中國有色金屬學報, 2001, 11(增刊1):110)

    Liu B W, Fan Y, Zhang J S, et al. Effect of SiO<sub>2</sub> and SiC on properties of Cu–Fe matrix sintered friction materials. <italic>Chin J Nonferrous Met</italic>, 2001, 11(增刊1): 110
    [15] Guo W, Shen Y, Lu D P, et al. Effect of heat treatment on microstructure and properties of Cu–14Fe–C alloy. <italic>Heat Treat Met</italic>, 2018, 43(4): 88

    郭煒, 諶昀, 陸德平, 等. 熱處理對Cu–14Fe–C合金組織和性能的影響. 金屬熱處理, 2018, 43(4):88
    [16] Guo M X, Wang F, Yi L. The microstructure controlling and deformation behaviors of Cu–Fe–C alloy prepared by rapid solidification. <italic>Mater Sci Eng A</italic>, 2016, 657: 197 doi: 10.1016/j.msea.2016.01.068
    [17] Guo M X, Zhu J, Yi L, et al. Effects of precipitation and strain-induced martensitic transformation of Fe–C phases on the mechanical properties of Cu–Fe–C alloy. <italic>Mater Sci Eng A</italic>, 2017, 697: 119 doi: 10.1016/j.msea.2017.05.010
    [18] Cui Z Q, Qin Y C. Metallology and Heat Treatment. 2nd Ed. Beijing: China Machine Press, 2011

    崔忠圻, 覃耀春. 金屬學與熱處理. 2版. 北京: 機械工業出版社, 2011
    [19] Shi B, Song H W, Wang X F, et al. Nanoindentation characterization of low carbon matensitic steels//Proceedings of New Progress on Materials Science and Engineering. Beijing, 2004: 1300

    史弼, 宋洪偉, 王秀芳, 等. 低碳板條馬氏體鋼的納米壓痕表征//材料科學與工程新進展論文集. 北京, 2004: 1300
    [20] Zhang J S, Liu X J, Cui H, et al. Mechanical properties around reinforce particles in metal matrix composites characterized by nanoindentation technique. <italic>Acta Metall Sinica</italic>, 1997, 33(5): 548

    張濟山, 劉興江, 崔華, 等. 金屬基復合材料相界面區力學性能顯微力學探針分析. 金屬學報, 1997, 33(5):548
    [21] He J A, Wang Y W. Material Wear and Wear Resistance Materials. Shenyang: Northeastern University Press, 2001

    何獎愛, 王玉瑋. 材料磨損與耐磨材料. 沈陽: 東北大學出版社, 2001
    [22] Huang X X, Shen Y H, Jin S Y, et al. High-temperature wear performance and mechanism of NM400/NM500 mining machinery steels. <italic>Chin J Eng</italic>, 2019, 41(6): 797

    黃夏旭, 申炎華, 靳舜堯, 等. NM400/NM500級礦山機械用鋼的高溫磨損性能及機理. 工程科學學報, 2019, 41(6):797
  • 加載中
圖(12) / 表(1)
計量
  • 文章訪問數:  1453
  • HTML全文瀏覽量:  876
  • PDF下載量:  61
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-09-18
  • 刊出日期:  2020-09-20

目錄

    /

    返回文章
    返回