<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于強化學習的工控系統惡意軟件行為檢測方法

高洋 王禮偉 任望 謝豐 莫曉鋒 羅熊 王衛蘋 楊璽

高洋, 王禮偉, 任望, 謝豐, 莫曉鋒, 羅熊, 王衛蘋, 楊璽. 基于強化學習的工控系統惡意軟件行為檢測方法[J]. 工程科學學報, 2020, 42(4): 455-462. doi: 10.13374/j.issn2095-9389.2019.09.16.005
引用本文: 高洋, 王禮偉, 任望, 謝豐, 莫曉鋒, 羅熊, 王衛蘋, 楊璽. 基于強化學習的工控系統惡意軟件行為檢測方法[J]. 工程科學學報, 2020, 42(4): 455-462. doi: 10.13374/j.issn2095-9389.2019.09.16.005
GAO Yang, WANG Li-wei, REN Wang, XIE Feng, MO Xiao-feng, LUO Xiong, WANG Wei-ping, YANG Xi. Reinforcement learning-based detection method for malware behavior in industrial control systems[J]. Chinese Journal of Engineering, 2020, 42(4): 455-462. doi: 10.13374/j.issn2095-9389.2019.09.16.005
Citation: GAO Yang, WANG Li-wei, REN Wang, XIE Feng, MO Xiao-feng, LUO Xiong, WANG Wei-ping, YANG Xi. Reinforcement learning-based detection method for malware behavior in industrial control systems[J]. Chinese Journal of Engineering, 2020, 42(4): 455-462. doi: 10.13374/j.issn2095-9389.2019.09.16.005

基于強化學習的工控系統惡意軟件行為檢測方法

doi: 10.13374/j.issn2095-9389.2019.09.16.005
基金項目: 國家自然科學基金資助項目(U1736117,U1836106);北京市自然科學基金資助項目(19L2029,9204028);北京市智能物流系統協同創新中心開放課題資助項目(BILSCIC-2019KF-08);北京科技大學順德研究生院科技創新專項資金資助項目(BK19BF006);材料領域知識工程北京市重點實驗室基本業務費資助項目(FRF-BD-19-012A)
詳細信息
    通訊作者:

    E-mail:xluo@ustb.edu.cn

  • 中圖分類號: TP273

Reinforcement learning-based detection method for malware behavior in industrial control systems

More Information
  • 摘要: 網絡環境下的惡意軟件嚴重威脅著工控系統的安全,隨著目前惡意軟件變種的逐漸增多,給工控系統惡意軟件的檢測和安全防護帶來了巨大的挑戰。現有的檢測方法存在著自適應檢測識別的智能化程度不高等局限性。針對此問題,圍繞威脅工控系統網絡安全的惡意軟件對象,本文通過結合利用強化學習這一高級的機器學習算法,設計了一個檢測應用方法框架。在實現過程中,根據惡意軟件行為檢測的實際需求,充分結合強化學習的序列決策和動態反饋學習等智能特征,詳細討論并設計了其中的特征提取網絡、策略網絡和分類網絡等關鍵應用模塊。基于惡意軟件實際測試數據集進行的應用實驗驗證了本文方法的有效性,可為一般惡意軟件行為檢測提供一種智能化的決策輔助手段。

     

  • 圖  1  總體結構

    Figure  1.  Framework

    圖  2  測試集上的準確率

    Figure  2.  Accuracy in the test dataset

    圖  3  測試集上查準率和查全率隨迭代次數的變化

    Figure  3.  Precision and recall in the test dataset

    表  1  分類結果的混淆矩陣

    Table  1.   Confusion matrix

    Confusion matrixPrediction : maliciousPrediction : benign
    Truth : malicious257 (TP)43 (FN)
    Truth : benign4 (FP)296 (TN)
    下載: 導出CSV

    表  2  刪除比例最高和最低的各5個API函數

    Table  2.   Five API functions with the highest and lowest deletion rates

    API FunctionsNumber of deleting operationNumber of retaining operationRate of deleting operation
    VirtualAllocEx1742090.454308
    IsDBCSLeadByte891350.397321
    GetSystemDirectoryA1012060.328990
    CreateThread381060.263889
    GetDC822290.263666
    GetProcAddress028830
    CloseHandle028530
    LocalFree019390
    GetModuleFileNameW014850
    lstrlenW014600
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Shi Y J. Research on the Key Security Issues of Mobile and Open Industrial Control System[Dissertation]. Beijing: Beijing University of Posts and Telecommunications, 2016

    時憶杰. 移動互聯環境下工業控制系統安全問題研究[學位論文]. 北京: 北京郵電大學, 2016
    [2] Demontis A, Melis M, Biggio B, et al. Yes, machine learning can be more secure! A case study on android malware detection. IEEE Trans Dependable Secure Comput, 2019, 16(4): 711 doi: 10.1109/TDSC.2017.2700270
    [3] Sharif M, Lanzi A, Giffin J, et al. Impeding malware analysis using conditional code obfuscation // Proceedings of the Network and Distributed System Security Symposium. San Diego, 2008: 1939
    [4] Xiao X, Wang Z, Li Q, et al. Back-propagation neural network on Markov chains from system call sequences: a new approach for detecting Android malware with system call sequences. IET Inf Secur, 2016, 11(1): 8
    [5] Su X, Zhang D F, Li W J, et al. A deep learning approach to android malware feature learning and detection // 2016 IEEE Trustcom/BigDataSE/ISPA. Tianjin, 2016: 244
    [6] Li G L, Gomez R, Nakamura K, et al. Human-centered reinforcement learning: a survey. IEEE Trans Human Mach Syst, 2019, 49(4): 337 doi: 10.1109/THMS.2019.2912447
    [7] Wu C S, Shi J Y, Yang Y X, et al. Enhancing machine learning based malware detection model by reinforcement learning // Proceedings of the 8th International Conference on Communication and Network Security. Qingdao, 2018: 74
    [8] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature, 2015, 518(7540): 529 doi: 10.1038/nature14236
    [9] Schultz M, Eskin E, Zadok F, et al. Data mining methods for detection of new malicious executables // Proceedings of the IEEE Symposium on Security and Privacy. Oakland, 2001: 38
    [10] Santos I, Brezo F, Ugarte-Pedrero X, et al. Opcode sequences as representation of executables for data-mining-based unknown malware detection. Inf Sci, 2013, 231: 64 doi: 10.1016/j.ins.2011.08.020
    [11] Zhang J X, Qin Z, Yin H, et al. IRMD: Malware variant detection using opcode image recognition // Proceedings of the IEEE 22nd International Conference on Parallel and Distributed Systems. Wuhan, 2016: 1175
    [12] Tandon G, Chan P. Learning rules from system call arguments and sequences for anomaly detection // Proceedings of the International Workshop on Data Mining for Computer Security. Melbourne, 2003: 20
    [13] Willems C, Holz T, Freiling F. Toward automated dynamic malware analysis using CWSandbox. IEEE Secur Privacy, 2007, 5(2): 32 doi: 10.1109/MSP.2007.45
    [14] Rieck K, Trinius P, Willems C, et al. Automatic analysis of malware behavior using machine learning. J Comput Secur, 2011, 19(4): 639 doi: 10.3233/JCS-2010-0410
    [15] Ki Y, Kim E, Kim H K. A novel approach to detect malware based on API call sequence analysis. Int J Distrib Sens Netw, 2015, 11(6): 659101 doi: 10.1155/2015/659101
    [16] Busoniu L, Babu?ka R, De Schutter B. A comprehensive survey of multiagent reinforcement learning. IEEE Trans Syst Man Cybern Part C Appl Rev, 2008, 38(2): 156 doi: 10.1109/TSMCC.2007.913919
    [17] Zhang T Y, Huang M L, Zhao L, et al. Learning structured representation for text classification via reinforcement learning // Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans, 2018: 6053
  • 加載中
圖(3) / 表(2)
計量
  • 文章訪問數:  2807
  • HTML全文瀏覽量:  1529
  • PDF下載量:  132
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-09-15
  • 刊出日期:  2020-04-01

目錄

    /

    返回文章
    返回