<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

面向物聯網業務綠色接入的異構蜂窩網絡優化

劉婭汐 皇甫偉

劉婭汐, 皇甫偉. 面向物聯網業務綠色接入的異構蜂窩網絡優化[J]. 工程科學學報, 2020, 42(4): 483-489. doi: 10.13374/j.issn2095-9389.2019.09.15.009
引用本文: 劉婭汐, 皇甫偉. 面向物聯網業務綠色接入的異構蜂窩網絡優化[J]. 工程科學學報, 2020, 42(4): 483-489. doi: 10.13374/j.issn2095-9389.2019.09.15.009
LIU Ya-xi, HUANGFU Wei. Heterogeneous cellular network optimization for green access of IoT traffics[J]. Chinese Journal of Engineering, 2020, 42(4): 483-489. doi: 10.13374/j.issn2095-9389.2019.09.15.009
Citation: LIU Ya-xi, HUANGFU Wei. Heterogeneous cellular network optimization for green access of IoT traffics[J]. Chinese Journal of Engineering, 2020, 42(4): 483-489. doi: 10.13374/j.issn2095-9389.2019.09.15.009

面向物聯網業務綠色接入的異構蜂窩網絡優化

doi: 10.13374/j.issn2095-9389.2019.09.15.009
基金項目: 教育部—中國移動科研基金資助項目(MCM201601013)
詳細信息
    通訊作者:

    E-mail:huangfuwei@ustb.edu.cn

  • 中圖分類號: TN929.5

Heterogeneous cellular network optimization for green access of IoT traffics

More Information
  • 摘要: 物聯網是未來賽博使能業務的重要支撐平臺。蜂窩網絡則被認為是廣泛分布在部署區域中的物聯網終端數據接入的主要渠道,尤其在廣域覆蓋方面具有難以替代的價值。在滿足覆蓋要求的條件下,降低蜂窩網絡基站的下行發射功率在綠色通信方面具有重要的研究意義。由此提出了一種基于優化目標平滑近似和均方根傳播策略的梯度下降算法,在滿足物聯網業務覆蓋率的條件下最小化基站的總下行發射功率。首先,使用罰函數方法將復雜約束條件的異構蜂窩網絡優化問題轉化為簡單約束形式的優化問題;其次,將不可導的目標函數通過平滑近似轉化為可導形式,并給出其對天線下傾角和下行功率參數的梯度解析形式;最后,使用均方根傳播梯度下降算法進行轉化后的目標函數優化。仿真實驗結果表明該算法可以在滿足覆蓋率指標的條件下最小化基站的總下行發射功率,與現有元啟發算法和普通梯度下降算法相比,具有良好的收斂速度,并能更好地抑制優化過程中振蕩。

     

  • 圖  1  網絡部署圖

    Figure  1.  Network deployment

    圖  2  19扇區理想蜂窩仿真場景

    Figure  2.  Simulation scenario of 19-cells ideal honeycomb

    圖  3  覆蓋示意圖。(a)初始狀態(b)第1代(c)第100代(d)第1000代

    Figure  3.  Illustration of coverage map: (a) initial state (b) the 1th iteration (c) the 100th iteration (d) the 1000th iteration

    圖  4  覆蓋率和總下行功率損耗與迭代次數關系圖。(a)梯度下降算法;(b)SGR算法前1000代;(c)SGR算法前10代

    Figure  4.  Illustration of coverage and power consumption versus iteration: (a) gradient descent algorithm; (b) SGR algorithm with 1000 iterations; (c) SGR algorithm with 10 iterations

    表  1  參數設置

    Table  1.   Parameter settings

    ParameterValueParameterValueParameterValue
    ${\rm{Gau}}/{\rm{dBm}}$?110${\rm{T}}{{\rm{H}}_{{\rm{Cov}}}}$0.8${l^{{\rm{nat}}}}/{\rm{dB}}$20
    ${\rm{T}}{{\rm{H}}_{{\rm{RS}}}}/{\rm{dBm}}$?92${g_{i,j,\hat p}}/{\rm{dB}}$10$\lambda $10
    ${\rm{T}}{{\rm{H}}_{{\rm{SI}}}}/{\rm{dB}}$?3$c$300$f/{\rm{MHz}}$1800
    ${\rm{h}}{{\rm{r}}_j}/{\rm{m}}$1.5$\gamma $0.9$\varepsilon $10?8
    ${G_{{\rm{max}}}}/{\rm{dB}}$16.34${G_{{\rm{atte}}}}/{\rm{dB}}$32${A_{{\rm{SL}}}}/{\rm{dB}}$32
    ${\varphi _{{\rm{3dB}}}}/{(^{\circ} })$70${\phi _{{\rm{3dB}}}}/{(^{\circ} })$9${g^{{\rm{term}}}}/{\rm{dB}}$2
    ${l^{{\rm{shad}}}}/{\rm{dB}}$7.25$\eta $0.01
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Murray J H, Murray J H. Hamlet on The Holodeck: The future of Narrative in Cyberspace. Cambridge: MIT press, 2017
    [2] Novo O. Blockchain meets IoT: an architecture for scalable access management in IoT. IEEE Internet Things J, 2018, 5(2): 1184 doi: 10.1109/JIOT.2018.2812239
    [3] Al-Bowarab M H, Zakaria N A, Abidin Z Z, et al. Review on device-to-device communication in cellular based network systems. Int J Eng Technol, 2018, 7(3.20): 435 doi: 10.14419/ijet.v7i3.20.20587
    [4] Zayas A D, Merino P. The 3GPP NB-IoT system architecture for the internet of things // 2017 IEEE International Conference on Communications Workshops (ICC Workshops). Paris, 2017: 277
    [5] Dragi?evi? T, Siano P, Prabaharan S R. Future generation 5G wireless networks for smart grid: a comprehensive review. Energies, 2019, 12(11): 2140 doi: 10.3390/en12112140
    [6] Chen M, Zhang Y, Li Y, et al. EMC: emotion-aware mobile cloud computing in 5G. IEEE Network, 2015, 29(2): 32 doi: 10.1109/MNET.2015.7064900
    [7] Al-Falahy N, Alani O Y. Technologies for 5G networks: Challenges and opportunities. IT Professional, 2017, 19(1): 12 doi: 10.1109/MITP.2017.9
    [8] Awad N, Mkwawa I H. The impact of the reference signal received power to quality of experience for video streaming over LTE network // 2017 Annual Conference on New Trends in Information & Communications Technology Applications (NTICT). Baghdad, 2017: 192
    [9] Dutta N, Sarma H K D, Polkowski Z. Cluster based routing in cognitive radio adhoc networks: Reconnoitering SINR and ETT impact on clustering. Comput Commun, 2018, 115: 10 doi: 10.1016/j.comcom.2017.09.002
    [10] Lee D, Zhou S, Zhong X F, et al. Spatial modeling of the traffic density in cellular networks. IEEE Wirel Commun, 2014, 21(1): 80 doi: 10.1109/MWC.2014.6757900
    [11] Lalitha A, Mondal S, Kumar S, et al. Power-optimal scheduling for a green base station with delay constraints // 2013 National Conference on Communications (NCC). New Delhi, 2013: 1
    [12] Tabia N, Gondran A, Baala O, et al. Interference model and antenna parameters setting effects on 4G-LTE networks coverage // Proceedings of the 7th ACM Workshop on Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks. ACM, 2012: 175
    [13] Klessig H, Fehske A, Fettweis G, et al. Improving coverage and load conditions through joint adaptation of antenna tilts and cell selection rules in mobile networks // 2012 International Symposium on Wireless Communication Systems (ISWCS). Paris, 2012: 21
    [14] Gao Y, Li Y, Zhou S D, et al. System level performance of energy efficient dynamic mechanical antenna tilt angle switching in LTE-Advanced systems // 2013 IEEE International Wireless Symposium (IWS). Beijing, 2013: 1
    [15] Han R, Feng C Y, Xia H L, et al. Coverage optimization for dense deployment small cell based on ant colony algorithm // 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall). Vancouver, 2014: 1
    [16] Yin M J, Feng L, Li W J, et al. Cell outage compensation based on CoMP and optimization of tilt. J China Univ Posts Telecommun, 2015, 22(5): 71 doi: 10.1016/S1005-8885(15)60683-5
    [17] Valavanis I K, Zarbouti D, Athanasiadou G E, et al. Basestation antenna pattern reconfiguration for minimum transmit power network planning // 2015 IEEE Online Conference on Green Communications (OnlineGreenComm). Piscataway, 2015: 66
    [18] Balasubramanya N M, Lampe L. Simulated annealing based joint coverage and capacity optimization in LTE // 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). Vancouver, 2016: 1
    [19] Phan N Q, Bui T O, Jiang H L, et al. Coverage optimization of LTE networks based on antenna tilt adjusting considering network load. China Commun, 2017, 14(5): 48 doi: 10.1109/CC.2017.7942314
    [20] Sousa M, Martins A, Vieira P. Self-optimization of low coverage and high interference in real 3G/4G radio access networks. i-ETC:ISEL Acad J Electron Telecommun Comput, 2018, 3(1): 12
    [21] Liu Y X, Huangfu W, Zhang H J, et al. An efficient stochastic gradient descent algorithm to maximize the coverage of cellular networks. IEEE Trans Wirel Commun, 2019, 18(7): 3424 doi: 10.1109/TWC.2019.2914040
    [22] Liu Y X, Huangfu W, Zhang H J, et al. Elite gradient descent optimization of antenna parameters constrained by radio coverage in green cellular networks // 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Anaheim, 2018: 843
    [23] Mukkamala M C, Hein M. Variants of RMSProp and adagrad with logarithmic regret bounds // Proceedings of the 34th International Conference on Machine Learning. Sydney, 2017: 2545
    [24] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); further Advancements for E-UTRA Physical Layer Aspects. 3rd Generation Partnership Project, Tech. Rep. 36.814, 2010
    [25] Singh Y. Comparison of okumura, hata and cost-231 models on the basis of path loss and signal strength. Int J Comput Appl, 2012, 59(11): 37
  • 加載中
圖(4) / 表(1)
計量
  • 文章訪問數:  1230
  • HTML全文瀏覽量:  994
  • PDF下載量:  23
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-09-15
  • 刊出日期:  2020-04-01

目錄

    /

    返回文章
    返回