<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于索引?存根表的云存儲數據完整性審計

趙海春 姚宣霞 鄭雪峰

趙海春, 姚宣霞, 鄭雪峰. 基于索引?存根表的云存儲數據完整性審計[J]. 工程科學學報, 2020, 42(4): 490-499. doi: 10.13374/j.issn2095-9389.2019.09.15.008
引用本文: 趙海春, 姚宣霞, 鄭雪峰. 基于索引?存根表的云存儲數據完整性審計[J]. 工程科學學報, 2020, 42(4): 490-499. doi: 10.13374/j.issn2095-9389.2019.09.15.008
ZHAO Hai-chun, YAO Xuan-xia, ZHENG Xue-feng. Cloud storage data integrity audit based on an index–stub table[J]. Chinese Journal of Engineering, 2020, 42(4): 490-499. doi: 10.13374/j.issn2095-9389.2019.09.15.008
Citation: ZHAO Hai-chun, YAO Xuan-xia, ZHENG Xue-feng. Cloud storage data integrity audit based on an index–stub table[J]. Chinese Journal of Engineering, 2020, 42(4): 490-499. doi: 10.13374/j.issn2095-9389.2019.09.15.008

基于索引?存根表的云存儲數據完整性審計

doi: 10.13374/j.issn2095-9389.2019.09.15.008
基金項目: 國家自然科學基金資助項目(61872038)
詳細信息
    通訊作者:

    E-mail:sccezhaohc@163.com

  • 中圖分類號: TP393.0

Cloud storage data integrity audit based on an index–stub table

More Information
  • 摘要: 近年來研究人員提出了各種針對云存儲數據進行完整性審計的方案。其中,在一部分基于同態認證碼、數據塊隨機抽樣和隨機掩碼等技術提出的云存儲公共審計方案中,用戶需要存儲和維護一個與文件中數據塊的索引信息有關的二維表。當用戶的外包數據需要頻繁地進行更新時,為了防止因相同的塊索引值被重復使用而遭受偽造攻擊,使得設計和維護這個二維表變得繁瑣。針對此問題,本文首先提出了一個結構簡單且易于維護的索引–存根表結構,并基于該結構提出了一個具有隱私保護屬性的云存儲第三方審計方案,該方案能夠有效地支持對外包數據進行各種數據塊級的遠程動態操作。然后,在隨機預言機模型下,對方案提供的數據完整性保證給出了形式化的安全證明,對方案中審計協議的隱私保護屬性也給出了形式化的安全分析。最后,針對方案的性能進行了理論分析和相關的實驗比較,結果表明該方案是高效的。

     

  • 圖  1  包含CSS、云用戶和TPA的云存儲架構

    Figure  1.  Cloud storage architecture with CSS, cloud users, and TPA

    圖  2  存根與票據

    Figure  2.  Stub and ticket

    圖  3  概率框架的計算過程

    Figure  3.  Computation process of the probabilistic framework

    圖  4  批量審計與分別單獨審計的平均審計時間比較

    Figure  4.  Comparison of the average audit time between the batch audit and separate audit

    圖  5  TPA的計算時間比較

    Figure  5.  Comparisons of the TPA computing time

    圖  6  CSP的計算時間比較

    Figure  6.  Comparisons of the CSP computing time

    表  1  索引–存根表

    Table  1.   Index–stub table

    Serial numberStub
    1$ {\left(H\left({m}_{1}\right)\right)}^{\alpha /\beta }$
    2$ {\left(H\left({m}_{2}\right)\right)}^{\alpha /\beta }$
    $ \vdots $$\vdots $
    i$ {\left(H\left({m}_{i}\right)\right)}^{\alpha /\beta }$
    $\vdots $$\vdots $
    n$ ({H\left({m}_{n}\right))}^{\alpha /\beta }$
    下載: 導出CSV

    表  2  符號和相關操作說明

    Table  2.   Notations of relevant operations

    NotationMeaning
    $ {{\rm{M}}{\rm{u}}{\rm{l}}{\rm{t}}}_{{\rm{G}}}^{x}$x multiplications in group G
    $ {{\rm{M}}{\rm{u}}{\rm{l}}{\rm{t}}}_{{G}_{T}}^{x}$x multiplications in group GT
    $ {{\rm{M}}{\rm{u}}{\rm{l}}{\rm{t}}}_{{Z}_{p}}^{x}$x multiplications in group Zp
    $ {{\rm{H}}{\rm{a}}{\rm{s}}{\rm{h}}}_{{Z}_{p}}^{x}$x hash values into group Zp
    $ {{\rm{H}}{\rm{a}}{\rm{s}}{\rm{h}}}_{G}^{x}$x hash values into group G
    $ {{\rm{A}}{\rm{d}}{\rm{d}}}_{{Z}_{p}}^{x}$x additions on group Zp
    $ {{\rm{E}}{\rm{x}}{\rm{p}}}_{G}^{x}$x exponentiations gt, where gG, tZp
    $ {{\rm{E}}{\rm{x}}{\rm{p}}}_{{G}_{T}}^{x}$x exponentiations $ {{g}_{T}}^{t}$, where gTGT, tZp
    $ {{\rm{P}}{\rm{a}}{\rm{i}}{\rm{r}}}_{{G}_{T}}^{x}$x pairings, $ e(u,v)$, where $ u, v \in G$, $ e(u,v)\in {G}_{T}$
    $ {{\rm{P}}{\rm{R}}{\rm{P}}}_{S}^{x}$x PRPs in $ {S=\left\{{0,1}\right\}}^{{{\rm{log}}}_{2}n}$
    $ {{\rm{P}}{\rm{R}}{\rm{F}}}_{{Z}_{p}}^{x}$x PRFs in Zp
    下載: 導出CSV

    表  3  不同的隱私保護方案之間的計算開銷比較

    Table  3.   Comparison of the computation overhead of different privacy-preserving schemes

    SchemeUser’s computation overheadServer’s computation overheadVerifier’s computation overhead
    Reference [5]$ {{\rm{E}}{\rm{x}}{\rm{p}}}_{G}^{n \cdot (s+2)}+{{\rm{M}}{\rm{u}}{\rm{l}}{\rm{t}}}_{G}^{n \cdot s}+{{\rm{H}}{\rm{a}}{\rm{s}}{\rm{h}}}_{G}^{n}$$\begin{array}{l} { {\rm{P} }{\rm{a} }{\rm{i} }{\rm{r} } }_{ {G}_{T} }^{s}+{ {\rm{E} }{\rm{x} }{\rm{p} } }_{ {G}_{T} }^{s}+{ {\rm{E} }{\rm{x} }{\rm{p} } }_{G}^{c}+{ {\rm{M} }{\rm{u} }{\rm{l} }{\rm{t} } }_{G}^{c-1}+\\{ {\rm{M} }{\rm{u} }{\rm{l} }{\rm{t} } }_{ {Z}_{p} }^{(c+1) \cdot s}+{ {\rm{A} }{\rm{d} }{\rm{d} } }_{ {Z}_{p} }^{c \cdot s}+{ {\rm{H} }{\rm{a} }{\rm{s} }{\rm{h} } }_{ {Z}_{p} }^{1}\end{array}$$\begin{array}{l} { {\rm{P} }{\rm{a} }{\rm{i} }{\rm{r} } }_{ {G}_{T} }^{2}+{ {\rm{E} }{\rm{x} }{\rm{p} } }_{G}^{s+c+2}+{ {\rm{M} }{\rm{u} }{\rm{l} }{\rm{t} } }_{G}^{c+s-1}+\\{ {\rm{M} }{\rm{u} }{\rm{l} }{\rm{t} } }_{ {G}_{T} }^{s}+{ {\rm{H} }{\rm{a} }{\rm{s} }{\rm{h} } }_{G}^{c}+{ {\rm{H} }{\rm{a} }{\rm{s} }{\rm{h} } }_{ {Z}_{p} }^{1}\end{array}$
    Our scheme$\begin{array}{l} { {\rm{E} }{\rm{x} }{\rm{p} } }_{G}^{3 \cdot n+2}+{ {\rm{M} }{\rm{u} }{\rm{l} }{\rm{t} } }_{G}^{n}+{ {\rm{M} }{\rm{u} }{\rm{l} }{\rm{t} } }_{ {Z}_{p} }^{n \cdot s}+\\{ {\rm{A} }{\rm{d} }{\rm{d} } }_{ {Z}_{p} }^{n \cdot (s-1)}+{ {\rm{H} }{\rm{a} }{\rm{s} }{\rm{h} } }_{G}^{n} \end{array}$$ \begin{array}{l} { { {\rm{P} }{\rm{a} }{\rm{i} }{\rm{r} } }_{ {G}_{T} }^{1}+{\rm{E} }{\rm{x} }{\rm{p} } }_{G}^{c+s+2}+{ {\rm{M} }{\rm{u} }{\rm{l} }{\rm{t} } }_{G}^{c}+{ {\rm{M} }{\rm{u} }{\rm{l} }{\rm{t} } }_{ {Z}_{p} }^{c+2}+\\ { {\rm{A} }{\rm{d} }{\rm{d} } }_{ {Z}_{p} }^{c}+{ {\rm{H} }{\rm{a} }{\rm{s} }{\rm{h} } }_{ {Z}_{p} }^{1}+{ {\rm{P} }{\rm{R} }{\rm{P} } }_{S}^{c}+{ {\rm{P} }{\rm{R} }{\rm{F} } }_{ {Z}_{p} }^{c}\end{array}$$ \begin{array}{l} { {\rm{P} }{\rm{a} }{\rm{i} }{\rm{r} } }_{ {G}_{T} }^{2}+{ {\rm{E} }{\rm{x} }{\rm{p} } }_{G}^{c+s+2}+{ {\rm{M} }{\rm{u} }{\rm{l} }{\rm{t} } }_{G}^{c+s}+\\{ {\rm{M} }{\rm{u} }{\rm{l} }{\rm{t} } }_{ {G}_{T} }^{1}+ { {\rm{P} }{\rm{R} }{\rm{P} } }_{S}^{c}+{ {\rm{P} }{\rm{R} }{\rm{F} } }_{ {Z}_{p} }^{c} \end{array}$
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Mell P M, Grance T. SP 800-145. The NIST Definition of Cloud Computing. US: National Institute of Standards and Technology, 2011
    [2] Ateniese G, Di Pietro R, Mancini L V, et al. Scalable and efficient provable data possession // Proceedings of the 4th International Conference on Security and Privacy in Communication Netowrks. Istanbul, 2008: 9
    [3] Archer J, Boehme A, Cullinane D, et al. Top threats to cloud computing V1.0[J/OL]. Cloud Security Alliance. https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
    [4] Zhu Y, Hu H X, Ahn G J, et al. Efficient audit service outsourcing for data integrity in clouds. J Syst Softw, 2012, 85(5): 1083 doi: 10.1016/j.jss.2011.12.024
    [5] Wang C, Chow S S M, Wang Q, et al. Privacy-preserving public auditing for secure cloud storage. IEEE Trans Comput, 2013, 62(2): 362 doi: 10.1109/TC.2011.245
    [6] Liu C, Ranjan R, Yang C, et al. MuR-DPA: Top-down levelled multi-replica merkle hash tree based secure public auditing for dynamic big data storage on cloud. IEEE Trans Comput, 2015, 64(9): 2609 doi: 10.1109/TC.2014.2375190
    [7] Yu Y, Au M H, Ateniese G, et al. Identity-based remote data integrity checking with perfect data privacy preserving for cloud storage. IEEE Trans Inf Forensics Secur, 2017, 12(4): 767 doi: 10.1109/TIFS.2016.2615853
    [8] Mo Z, Zhou Y A, Chen S G, et al. Enabling non-repudiable data possession verification in cloud storage systems // 2014 IEEE 7th International Conference on Cloud Computing. Anchorage, 2014: 232
    [9] Barsoum A F, Hasan M A. On verifying dynamic multiple data copies over cloud servers. Iacr Cryptology Eprint Archive, 2011
    [10] Liu C W, Hsien W F, Yang C C, et al. A survey of public auditing for shared data storage with user revocation in cloud computing. Int J Netw Secur, 2016, 18(4): 650
    [11] Shacham H, Waters B. Compact proofs of retrievability // International Conference on the Theory and Application of Cryptology and Information Security. Berlin: Springer, 2008: 90
    [12] Kaltz J, Lindell Y. Introduction to Modern Cryptography: Principles and Protocols. British: Chapman and Hall/CRC, 2008
    [13] Ateniese G, Burns R, Curtmola R, et al. Provable data possession at untrusted stores // Proceedings of the 14th ACM Conference on Computer and Communications Security. Alexandria, 2007: 598
    [14] Juels A, Kaliski Jr B S. PORs: proofs of retrievability for large files // Proceedings of the 14th ACM Conference on Computer and Communications Security. Alexandria, 2007: 584
    [15] Erway C C, Küp?ü A, Papamanthou C, et al. Dynamic provable data possession. ACM Trans Inf Syst Secur, 2015, 17(4): 15
    [16] Wang Q, Wang C, Ren K, et al. Enabling public auditability and data dynamics for storage security in cloud computing. IEEE Trans Parallel Distrib Syst, 2011, 22(5): 847 doi: 10.1109/TPDS.2010.183
    [17] Yuan J W, Yu S C. Pcpor: public and constant-cost proofs of retrievability in cloud1. J Comput Secur, 2015, 23(3): 403 doi: 10.3233/JCS-150525
    [18] Zhang J D, Wang B C, He D B, et al. Improved secure fuzzy auditing protocol for cloud data storage. Soft Comput, 2019, 23(10): 3411 doi: 10.1007/s00500-017-3000-1
    [19] Barsoum A F, Hasan M A. Provable multicopy dynamic data possession in cloud computing systems. IEEE Trans Inf Forensics Secur, 2015, 10(3): 485 doi: 10.1109/TIFS.2014.2384391
    [20] Yuan J W, Yu S C. Public integrity auditing for dynamic data sharing with multiuser modification. IEEE Trans Inf Forensics Secur, 2015, 10(8): 1717 doi: 10.1109/TIFS.2015.2423264
    [21] Wang H Q. Identity-based distributed provable data possession in multicloud storage. IEEE Trans Serv Comput, 2015, 8(2): 328 doi: 10.1109/TSC.2014.1
    [22] Yang G Y, Yu J, Shen W T, et al. Enabling public auditing for shared data in cloud storage supporting identity privacy and traceability. J Syst Softw, 2016, 113: 130 doi: 10.1016/j.jss.2015.11.044
    [23] Li Y N, Yu Y, Yang B, et al. Privacy preserving cloud data auditing with efficient key update. Future Gener Comput Syst, 2018, 78: 789 doi: 10.1016/j.future.2016.09.003
    [24] Hwang M S, Sun T H, Lee C C. Achieving dynamic data guarantee and data confidentiality of public auditing in cloud storage service. J Circuits Syst Comput, 2017, 26(5): 1750072 doi: 10.1142/S0218126617500724
    [25] Wang C, Ren K, Lou W J, et al. Toward publicly auditable secure cloud data storage services. IEEE Netw, 2010, 24(4): 19 doi: 10.1109/MNET.2010.5510914
    [26] Liu C, Chen J J, Yang L T, et al. Authorized public auditing of dynamic big data storage on cloud with efficient verifiable fine-grained updates. IEEE Trans Parallel Distrib Syst, 2014, 25(9): 2234 doi: 10.1109/TPDS.2013.191
    [27] Shah M A, Baker M, Mogul J C, et al. Auditing to keep online storage services honest// HOTOS'07: Proceedings of the 11th USENIX workshop on Hot topics in operating systems. CA, 2007: Article No. : 11
    [28] Pointcheval D, Stern J. Provably secure blind signature schemes // International Conference on the Theory and Application of Cryptology and Information Security. Berlin: Springer, 1996: 252
    [29] Zhao H C, Yao X X, Zheng X F, et al. User stateless privacy-preserving TPA auditing scheme for cloud storage. J Netw Comput Appl, 2019, 129: 62 doi: 10.1016/j.jnca.2019.01.005
    [30] Zhao H C, Yao X X, Zheng X F. Privacy-preserving TPA auditing scheme based on skip list for cloud storage. Int J Netw Secur, 2019, 21(3): 451
    [31] Boneh D, Franklin M. Identity-based encryption from the Weil pairing // Annual International Cryptology Conference. Berlin: Springer, 2001: 213
    [32] Worku S G, Xu C X, Zhao J N, et al. Secure and efficient privacy-preserving public auditing scheme for cloud storage. Comput Electr Eng, 2014, 40(5): 1703 doi: 10.1016/j.compeleceng.2013.10.004
  • 加載中
圖(6) / 表(3)
計量
  • 文章訪問數:  2437
  • HTML全文瀏覽量:  1368
  • PDF下載量:  28
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-09-15
  • 刊出日期:  2020-04-01

目錄

    /

    返回文章
    返回