<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于多目標支持向量機的ADHD分類

杜海鵬 邵立珍 張冬輝

杜海鵬, 邵立珍, 張冬輝. 基于多目標支持向量機的ADHD分類[J]. 工程科學學報, 2020, 42(4): 441-447. doi: 10.13374/j.issn2095-9389.2019.09.12.007
引用本文: 杜海鵬, 邵立珍, 張冬輝. 基于多目標支持向量機的ADHD分類[J]. 工程科學學報, 2020, 42(4): 441-447. doi: 10.13374/j.issn2095-9389.2019.09.12.007
DU Hai-peng, SHAO Li-zhen, ZHANG Dong-hui. ADHD classification based on a multi-objective support vector machine[J]. Chinese Journal of Engineering, 2020, 42(4): 441-447. doi: 10.13374/j.issn2095-9389.2019.09.12.007
Citation: DU Hai-peng, SHAO Li-zhen, ZHANG Dong-hui. ADHD classification based on a multi-objective support vector machine[J]. Chinese Journal of Engineering, 2020, 42(4): 441-447. doi: 10.13374/j.issn2095-9389.2019.09.12.007

基于多目標支持向量機的ADHD分類

doi: 10.13374/j.issn2095-9389.2019.09.12.007
詳細信息
    通訊作者:

    E-mail:lshao@ustb.edu.cn

  • 中圖分類號: TG181

ADHD classification based on a multi-objective support vector machine

More Information
  • 摘要: 注意力缺陷多動障礙(ADHD)是兒童期最常見的精神疾病之一,在大多數情況下持續到成年期。近年來,基于功能磁共振數據的ADHD分類成為了研究熱點。文獻中已有的大多數分類算法均假設樣本是均衡的,然而事實上,ADHD數據集通常是不平衡的。傳統的學習算法會使得分類器傾向于多數類樣本,從而導致性能下降。本文研究了基于不平衡神經影像數據的ADHD分類問題,即基于靜息狀態功能磁共振數據對ADHD進行分類。采用功能連接矩陣作為分類特征,提出了一種基于多目標支持向量機的ADHD數據分類方案。該方案將不均衡數據分類問題建模為具有三個目標的支持向量機模型,其中三個目標分別為最大化分類間隔、最小化正樣本誤差和最小化負樣本誤差,進而正負樣本經驗誤差可以被分開處理。然后采用多目標優化的法向量邊界交叉法對模型進行求解,并給出一組代表性的分類器供決策者進行選擇。該方案在ADHD-200競賽的五個數據集上進行測試評估,并與傳統分類方法進行對比。實驗結果表明本文提出的三個目標支持向量機分類方案比傳統的分類方法效果好,可以有效的從算法層面解決數據不平衡問題。該方案不僅可用于輔助ADHD診斷,還可用于阿爾茨海默病和自閉癥等疾病的輔助診斷。

     

  • 圖  1  功能連接矩陣采集流程圖

    Figure  1.  Flowchart of functional connection matrix acquisition

    圖  2  基于多目標支持向量機的ADHD分類方案

    Figure  2.  ADHD classification scheme based on multi-objective SVM

    圖  3  NBI方法中獲得的非支配點

    Figure  3.  Non-dominated points obtained using the NBI method

    圖  4  Peking-1數據集上非支配點集。(a)非支配點集;(b)非支配點1–5的權衡關系

    Figure  4.  Non-dominated points on Peking-1 data set: (a) non-dominated points; (b) trade-off information of non-dominated points 1–5

    圖  5  Peking-1數據集上1–5 Pareto最優分類器的性能.(a)范數與經驗誤差的關系;(b)范數與g-means的關系

    Figure  5.  Performance of Pareto optimal classifiers 1–5 for Peking-1: (a) norm versus empirical error; (b) norm versus g-means

    表  1  ADHD-200數據集描述

    Table  1.   Description of ADHD-200 data sets

    Data setTotal number of subjectsNumber of ADHD subjectsNumber of NC subjects
    KKI832261
    NYU21611898
    Peking-1852461
    Peking-2673532
    Peking-joint19478116
    下載: 導出CSV

    表  2  訓練集/交叉驗證集上的性能評價

    Table  2.   Evaluation of the training/cross-validation data set

    Classifier123456
    Accuracy0.6600/0.68420.6400/0.68420.6600/0.73680.6800/0.38420.6600/0.73680.6000/0.6316
    G-means0.6547/0.53110.6607/0.62020.6929/0.71610.7237/0.67940.7182/0.75960.6299/0.5883
    Classefier7891011
    Accuracy0.6000/0.68420.6200/0.68420.6000/0.68420.6200/0.68420.5800/0.5789
    G-means0.6299/0.67940.6726/0.67940.6547/0.71610.6841/0.71610.6268/0.5991
    下載: 導出CSV

    表  3  不同方法的平均準確度/g-means值

    Table  3.   Average accuracy/g-means value for different methods

    Data setL1SVML2SVMB-SVMRFELMT-SVM
    KKI0.635/0.4210.634/0.5150.732/0.5270.725/0.5300.696/0.6220.753/0.606
    NYU0.545/0.5430.556/0.5420.643/0.6240.608/0.6100.588/0.5940.703/0.698
    Peking-10.725/0.6830.714/0.6640.801/0.6770.770/0.6880.677/0.6470.813/0.711
    Peking-20.636/0.6370.665/0.6830.807/0.7760.635/0.6490.564/0.6010.845/0.851
    Peking-joint0.630/0.6150.624/0.6110.742/0.7640.665/0.6860.625/0.6130.751/0.743
    MNIST0.977/0.7830.978/0.7970.979/0.8000.975/0.7900.969/0.000.984/0.849
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] American Psychiatric Association. Diagnostic and statistical manual of mental disorders. BMC Med, 2013, 17: 133
    [2] Saad J F, Kohn M R, Clarke S, et al. Is the theta/beta EEG marker for ADHD inherently flawed? J Attention Disord, 2018, 22(9): 815 doi: 10.1177/1087054715578270
    [3] Chang C W, Ho C C, Chen J H. ADHD classification by a texture analysis of anatomical brain MRI data. Front Syst Neurosci, 2012, 6: 66
    [4] Kuang L D, Lin Q H, Gong X F, et al. Model order effects on ICA of resting-state complex-valued fMRI data: application to schizophrenia. J Neurosci Methods, 2018, 304: 24 doi: 10.1016/j.jneumeth.2018.02.013
    [5] Hojjati S H, Ebrahimzadeh A, Khazaee A, et al. Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. J Neurosci Methods, 2017, 282: 69 doi: 10.1016/j.jneumeth.2017.03.006
    [6] Castellanos F X, Margulies D S, Kelly C, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiat, 2008, 63(3): 332 doi: 10.1016/j.biopsych.2007.06.025
    [7] Du J Q, Wang L P, Jie B, et al. Network-based classification of ADHD patients using discriminative subnetwork selection and graph kernel PCA. Comput Med Imag Graph, 2016, 52: 82 doi: 10.1016/j.compmedimag.2016.04.004
    [8] Qureshi M N I, Jo H J, Lee B. ADHD subgroup discrimination with global connectivity features using hierarchical extreme learning machine: resting-state FMRI study // 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). Melbourne, 2017: 529
    [9] Miao B, Zhang Y L. A feature selection method for classification of ADHD // Proceedings of 4th International Conference on Information, Cybernetics and Computational Social Systems (ICCSS). Dalian, 2017: 21
    [10] Riaz A, Asad M, Alonso E, et al. Fusion of fMRI and non-imaging data for ADHD classification. Comput Med Imag Graph, 2018, 65: 115 doi: 10.1016/j.compmedimag.2017.10.002
    [11] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res, 2002, 16: 321 doi: 10.1613/jair.953
    [12] Krawczyk B. Learning from imbalanced data: open challenges and future directions. Prog Artif Intell, 2016, 5(4): 221 doi: 10.1007/s13748-016-0094-0
    [13] He H B, Garcia E A. Learning from imbalanced data. IEEE Trans Knowl Data Eng, 2009, 21(9): 1263 doi: 10.1109/TKDE.2008.239
    [14] Shao L Z, Xu Y D, Fu D M. Classification of ADHD with bi-objective optimization. J Biomed Inf, 2018, 84: 164 doi: 10.1016/j.jbi.2018.07.011
    [15] Bellec P, Chu C, Chouinard-Decorte F, et al. The neuro bureau ADHD-200 preprocessed repository. Neuroimage, 2017, 144: 275 doi: 10.1016/j.neuroimage.2016.06.034
    [16] Friston K J. Functional and effective connectivity: a review. Brain Connect, 2011, 1(1): 13 doi: 10.1089/brain.2011.0008
    [17] Reris R, Brooks J P. Principal component analysis and optimization: a tutorial // Proceedings of 14th INFORMS Computing Society Conference, Richmond, Virginia, US, 2015: 212
    [18] Cortes C, Vapnik V. Support-vector networks. Mach Learn, 1995, 20(3): 273
    [19] Aytug H, Say?n S. Exploring the trade-off between generalization and empirical errors in a one-norm SVM. Eur J Oper Res, 2012, 218(3): 667 doi: 10.1016/j.ejor.2011.11.037
    [20] A?kan A, Say?n S. SVM classification for imbalanced data sets using a multiobjective optimization framework. Ann Oper Res, 2014, 216(1): 191 doi: 10.1007/s10479-012-1300-5
    [21] Das I, Dennis J E. Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim, 1998, 8(3): 631 doi: 10.1137/S1052623496307510
    [22] Breiman L. Random forests. Mach Learn, 2001, 45(1): 5 doi: 10.1023/A:1010933404324
    [23] Peng X L, Lin P, Zhang T S, et al. Extreme learning machine-based classification of ADHD using brain structural MRI data. PloS One, 2013, 8(11): e79476 doi: 10.1371/journal.pone.0079476
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數:  1957
  • HTML全文瀏覽量:  1711
  • PDF下載量:  56
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-09-12
  • 刊出日期:  2020-04-01

目錄

    /

    返回文章
    返回