<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于YOLOv3的無人機識別與定位追蹤

陶磊 洪韜 鈔旭

陶磊, 洪韜, 鈔旭. 基于YOLOv3的無人機識別與定位追蹤[J]. 工程科學學報, 2020, 42(4): 463-468. doi: 10.13374/j.issn2095-9389.2019.09.10.002
引用本文: 陶磊, 洪韜, 鈔旭. 基于YOLOv3的無人機識別與定位追蹤[J]. 工程科學學報, 2020, 42(4): 463-468. doi: 10.13374/j.issn2095-9389.2019.09.10.002
TAO Lei, HONG Tao, CHAO Xu. Drone identification and location tracking based on YOLOv3[J]. Chinese Journal of Engineering, 2020, 42(4): 463-468. doi: 10.13374/j.issn2095-9389.2019.09.10.002
Citation: TAO Lei, HONG Tao, CHAO Xu. Drone identification and location tracking based on YOLOv3[J]. Chinese Journal of Engineering, 2020, 42(4): 463-468. doi: 10.13374/j.issn2095-9389.2019.09.10.002

基于YOLOv3的無人機識別與定位追蹤

doi: 10.13374/j.issn2095-9389.2019.09.10.002
基金項目: 國家自然科學基金資助項目(61827901,61671056)
詳細信息
    通訊作者:

    E-mail: taolei@buaa.edu.cn

  • 中圖分類號: TP391.41

Drone identification and location tracking based on YOLOv3

More Information
  • 摘要: 近年來,無人機入侵的事件經常發生,無人機跌落碰撞的事件也屢見不鮮,在人群密集的地方容易引發安全事故,所以無人機監測是目前安防領域的研究熱點。雖然目前有很多種無人機監測方案,但大多成本高昂,實施困難。在5G背景下,針對此問題提出了一種利用城市已有的監控網絡去獲取數據的方法,基于深度學習的算法進行無人機目標檢測,進而識別無人機,并追蹤定位無人機。該方法采用改進的YOLOv3模型檢測視頻幀中是否存在無人機,YOLOv3算法是YOLO(You only look once,一次到位)系列的第三代版本,屬于one-stage目標檢測算法這一類,在速度上相對于two-stage類型的算法有著明顯的優勢。YOLOv3輸出視頻幀中存在的無人機的位置信息。根據位置信息用PID(Proportion integration differentiation,比例積分微分)算法調節攝像頭的中心朝向追蹤無人機,再由多個攝像頭的參數解算出無人機的實際坐標,從而實現定位。本文通過拍攝無人機飛行的照片、從互聯網上搜索下載等方式構建了數據集,并且使用labelImg工具對圖片中的無人機進行了標注,數據集按照無人機的旋翼數量進行了分類。實驗中采用按旋翼數量分類后的數據集對檢測模型進行訓練,訓練后的模型在測試集上能達到83.24%的準確率和88.15%的召回率,在配備NVIDIA GTX 1060的計算機上能達到每秒20幀的速度,可實現實時追蹤。

     

  • 圖  1  YOLOv3的運行速度明顯快于其他可比的目標檢測算法[14]

    Figure  1.  YOLOv3 runs significantly faster than other detection methods with comparable performance[14]

    圖  2  YOLOv3網絡結構

    Figure  2.  YOLOv3 network structure

    圖  3  云臺相機原理圖。(a)二軸云臺相機;(b)PID控制攝像頭追蹤無人機

    Figure  3.  Schematic of pan and tile camera: (a) pan and tile camera;(b) tracking drones with PID control

    圖  4  PID控制流程圖

    Figure  4.  PID algorithm flowchart

    圖  5  解算無人機坐標

    Figure  5.  Solve the coordinates of the drone

    圖  6  SSD及YOLOv3的檢測結果(圖片上方是SSD模型的檢測結果,下方是YOLOv3的檢測結果)

    Figure  6.  SSD and YOLO’s test results (Above the picture is the test result of the SSD model, below is the test result of YOLOv3)

    表  1  模型的準確率和召回率

    Table  1.   Precision and recall of model

    Index Counts Categories Accuracy/% Recall/%
    1 150 Single rotor 88.00 86.00
    2 155 Four rotors 78.06 92.23
    3 158 Multiple rotors 83.54 86.16
    Average 83.24 88.15
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Dimitropoulos K, Grammalidis N, Gragopoulos I, et al. Detection, tracking and classification of vehicles and aircraft based on magnetic sensing technology. Int J Appl Math Comput Sci, 2006, 1: 195
    [2] de Haag M U, Bartone C G, Braasch M S. Flight-test evaluation of small form-factor LiDAR and radar sensors for sUAS detect-and-avoid applications // 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). Sacramento, 2016: 1
    [3] Saqib M, Khan S D, Sharma N, et al. A study on detecting drones using deep convolutional neural networks // 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Lecce, 2017: 1
    [4] Aker C, Kalkan S. Using deep networks for drone detection // 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Lecce, 2017: 1
    [5] Ganti S R, Kim Y. Implementation of detection and tracking mechanism for small UAS // 2016 International Conference on Unmanned Aircraft Systems (ICUAS). Arlington, 2016: 1254
    [6] Nam H, Han B. Learning multi-domain convolutional neural networks for visual tracking // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 4293
    [7] Zhang D, Maei H, Wang X, et al. Deep reinforcement learning for visual object tracking in videos[J/OL]. arXiv preprint (2017-04-10)[2019-09-10]. https://arxiv.org/abs/1701.08936
    [8] Xi X, Yu Z, Zhan Z, et al. Multi-task cost-sensitive-convolutional neural network for car detection. IEEE Access, 2019, 7: 98061 doi: 10.1109/ACCESS.2019.2927866
    [9] Wu Y W, Sui Y, Wang G H. Vision-based real-time aerial object localization and tracking for UAV sensing system. IEEE Access, 2017, 5: 23969 doi: 10.1109/ACCESS.2017.2764419
    [10] Rozantsev A, Lepetit V, Fua P. Flying objects detection from a single moving camera // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, 2015: 4128
    [11] Girshick R. Fast R-CNN // Proceedings of the IEEE International Conference on Computer Vision. Santiago, 2015: 1440
    [12] Ren S, He K, Girshick R, et al. Faster r-cnn: towards real-time object detection with region proposal networks // Advances in Neural Information Processing Systems. Canada, 2015: 91
    [13] Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector // European Conference on Computer Vision. Amsterdam, 2016: 21
    [14] Redmon J, Farhadi A. Yolov3: an incremental improvement[J/OL]. arXiv preprint (2018-04-08)[2019-09-10]. https://arxiv.org/abs/1804.02767
    [15] Redmon J, Farhadi A. YOLO9000: better, faster, stronger // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 7263
    [16] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016: 779
    [17] Coluccia A, Fascista A, Schumann A, et al. Drone-vs-Bird detection challenge at IEEE AVSS2019// 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Taipei, 2019: 1
    [18] Liu H, Wei Z Q, Chen Y T, et al. Drone detection based on an audio-assisted camera array // 2017 IEEE Third International Conference on Multimedia Big Data (BigMM). Laguna Hills, 2017: 402
    [19] Mezei J, Fiaska V, Molnár A. Drone sound detection // 2015 16th IEEE International Symposium on Computational Intelligence and Informatics (CINTI). Budapest, 2015: 333
    [20] Nguyen P, Ravindranatha M, Nguyen A, et al. Investigating cost-effective rf-based detection of drones // Proceedings of the 2nd Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use. Singapore, 2016: 17
    [21] Lin T Y, Maire M, Belongie S, et al. Microsoft coco: common objects in context // European Conference on Computer Vision. Zurich, 2014: 740
    [22] Deng J, Dong W, Socher R, et al. Imagenet: a large-scale hierarchical image database // 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, 2009: 248
    [23] Kingma D P, Ba J. Adam: a method for stochastic optimization[J/OL]. arXiv preprint (2017-01-30)[2019-09-10]. https://arxiv.org/abs/1412.6980
  • 加載中
圖(6) / 表(1)
計量
  • 文章訪問數:  3239
  • HTML全文瀏覽量:  3337
  • PDF下載量:  228
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-09-10
  • 刊出日期:  2020-04-01

目錄

    /

    返回文章
    返回