<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

礦區廢棄地移動機器人全覆蓋路徑規劃

周林娜 汪蕓 張鑫 楊春雨

周林娜, 汪蕓, 張鑫, 楊春雨. 礦區廢棄地移動機器人全覆蓋路徑規劃[J]. 工程科學學報, 2020, 42(9): 1220-1228. doi: 10.13374/j.issn2095-9389.2019.09.09.004
引用本文: 周林娜, 汪蕓, 張鑫, 楊春雨. 礦區廢棄地移動機器人全覆蓋路徑規劃[J]. 工程科學學報, 2020, 42(9): 1220-1228. doi: 10.13374/j.issn2095-9389.2019.09.09.004
ZHOU Lin-na, WANG Yun, ZHANG Xin, YANG Chun-yu. Complete coverage path planning of mobile robot on abandoned mine land[J]. Chinese Journal of Engineering, 2020, 42(9): 1220-1228. doi: 10.13374/j.issn2095-9389.2019.09.09.004
Citation: ZHOU Lin-na, WANG Yun, ZHANG Xin, YANG Chun-yu. Complete coverage path planning of mobile robot on abandoned mine land[J]. Chinese Journal of Engineering, 2020, 42(9): 1220-1228. doi: 10.13374/j.issn2095-9389.2019.09.09.004

礦區廢棄地移動機器人全覆蓋路徑規劃

doi: 10.13374/j.issn2095-9389.2019.09.09.004
基金項目: 國家自然科學基金資助項目(61873272);江蘇省雙創團隊資助項目(2017)
詳細信息
    通訊作者:

    E-mail:chunyuyang@cumt.edu.cn

  • 中圖分類號: TP242.6

Complete coverage path planning of mobile robot on abandoned mine land

More Information
  • 摘要: 礦區廢棄地為室外大型非結構化環境,包含多種類型的障礙物且存在諸多不確定性因素,給移動機器人全覆蓋路徑規劃造成了極大的困難。本文使用牛耕式單元分解法結合生物激勵神經網絡算法完成移動機器人對礦區廢棄地的全覆蓋路徑規劃。首先,針對礦區廢棄地已知環境,采用牛耕式單元分解法對復雜環境做出區域分解,將具有綜合復雜性的地圖分解為多個不含障礙物的子區域;然后,根據子區域的鄰接關系構建無向圖,采用深度優先搜索算法確定子區域間的轉移順序;最后,采用生物激勵神經網絡算法確定子區域內部行走方式以及子區域間路徑轉移。仿真結果表明,生物激勵神經網絡算法在解決機器人路徑轉移問題方面比其他路徑規劃算法更高效,所得的方法能夠處理復雜的非結構化環境,完成廢棄礦區移動機器人的覆蓋路徑規劃。

     

  • 圖  1  廢棄礦區現狀

    Figure  1.  Status of abandoned mine land

    圖  2  廢棄礦區復雜環境。(a)積水區;(b)廢棄廠區;(c)尾礦、煤矸石的堆占;(d)周邊土壤現狀

    Figure  2.  Complex environment of abandoned mine land: (a) pools zone; (b) abandoned factory; (c) heap of tailings and gangue; (d) status of surrounding soil

    圖  3  全覆蓋路徑規劃流程圖

    Figure  3.  Flow chart of complete coverage path planning

    圖  4  礦區廢棄地仿真圖。(a)仿真環境;(b)區域分解圖

    Figure  4.  Simulation map of abandoned mine land: (a) simulation environment; (b) regional decomposition map

    圖  5  子區域連接圖。(a)鄰接圖;(b)轉移序列圖

    Figure  5.  Connection diagram of subregions: (a) adjacency map; (b) transfer order map

    圖  6  BINN算法流程圖

    Figure  6.  Flow chart of BINN algorithm

    圖  7  子區域遍歷結果。(a)全覆蓋結果;(b)路徑轉移結果

    Figure  7.  Coverage results of subregions: (a) complete coverage result; (b) path transition result

    圖  8  實驗結果對比。(a)BINN算法;(b)A*算法;(c)Dijkstra算法;(d)RRT算法

    Figure  8.  Comparison of experimental results: (a) BINN algorithm; (b) A* algorithm; (c) Dijkstra algorithm; (d) RRT algorithm

    圖  9  算法性能評價結果圖。(a)距離對比結果;(b)時間對比結果

    Figure  9.  Performance evaluation results of algorithms: (a) distance comparison result; (b) time comparison result

    表  1  BCD方法步驟

    Table  1.   BCD method steps

    StepContent
    InputOriginal map
    Step 1Image preprocessing: erode the map
    Step 2Traverse the array columns to determine the connectivity of slices, and return the number of connectivity and connected regions
    Step 3If the slice connectivity changes, determine it is IN event or OUT event, and return the store data of current sub-region
    Step 4Represent partition information on a map
    OutputRegional decomposition map
    下載: 導出CSV

    表  2  DFS算法步驟

    Table  2.   DFS algorithm steps

    StepContent
    InputSub-region adjacency graph G
    Step 1Choose the starting cell $v$. Insert it into the path list. Mark it as visited
    Step 2Visit an adjacent cell ${w_{\rm{1}}}$. Insert this cell into the path list. Mark it as visited
    Step 3Start from ${w_1}$, go to the unvisited cell ${w_2}$ in the neighbor list of the ${w_1}$, insert this cell into the path list and mark it as visited. Repeat this procedure until all cells in G are visited
    Step 4Back track from the last cell and insert each element that is visited to the front of the path list, until an element with an unvisited neighbor is encountered. Insert this element to the front of the path list
    Step 5Repeat the above procedure until all cells in the adjacency graph have been visited
    OutputSub-region path list
    下載: 導出CSV

    表  3  路徑轉移距離對比

    Table  3.   Distance comparison of path transition

    AlgorithmDistance of path transitionTotal distance
    J—II—FF—C
    RRT algorithm8.3011.3012.8632.46
    Dijkstra algorithm7.839.4111.4128.65
    A* algorithm7.839.4111.4128.65
    BINN algorithm7.839.4110.8328.07
    下載: 導出CSV

    表  4  路徑轉移時間對比

    Table  4.   Time comparison of path transition

    AlgorithmTime of path transitionTotal time/s
    J—II—FF—C
    RRT algorithm4.144.656.2014.99
    Dijkstra algorithm1.071.311.774.15
    A* algorithm1.071.331.764.16
    BINN algorithm0.800.890.952.64
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Sang L H, Fu M C, Feng Y H. Progress and prospect of research on land reclamation planning and design in mining area. <italic>Coal Sci Technol</italic>, 2018, 46(2): 243

    桑李紅, 付梅臣, 馮洋歡. 煤礦區土地復墾規劃設計研究進展及展望. 煤炭科學技術, 2018, 46(2):243
    [2] Xu B, Xu M, Chen L P, et al. Review on coverage path planning algorithm for intelligent machinery. <italic>Comput Meas Control</italic>, 2016, 24(10): 1

    徐博, 徐旻, 陳立平, 等. 智能機械全覆蓋路徑規劃算法綜述. 計算機測量與控制, 2016, 24(10):1
    [3] Hsu P M, Lin C L, Yang M Y. On the complete coverage path planning for mobile robots. <italic>J Intell Robot Syst</italic>, 2014, 74(3-4): 945 doi: 10.1007/s10846-013-9856-0
    [4] Mac T T, Copot C, Tran D T, et al. Heuristic approaches in robot path planning: a survey. <italic>Rob Autonom Syst</italic>, 2016, 86: 13 doi: 10.1016/j.robot.2016.08.001
    [5] Wang Z L, Li H, Zhang X L. Construction waste recycling robot for nails and screws: computer vision technology and neural network approach. <italic>Autom Construct</italic>, 2019, 97: 220 doi: 10.1016/j.autcon.2018.11.009
    [6] Wang Y N, Pan Q, Chen Y J. Path planning method based on improved biologically inspired neural network. <italic>Control Eng China</italic>, 2018, 25(4): 541

    王耀南, 潘琪, 陳彥杰. 改進型生物激勵神經網絡的路徑規劃方法. 控制工程, 2018, 25(4):541
    [7] Zhu D Q, Cao X, Sun B, et al. Biologically inspired self-organizing map applied to task assignment and path planning of an AUV system. <italic>IEEE Trans Cognitive Dev Syst</italic>, 2018, 10(2): 304 doi: 10.1109/TCDS.2017.2727678
    [8] Zhu D Q, Yan M Z. Survey on technology of mobile robot path planning. <italic>Control Des</italic>, 2010, 25(7): 961

    朱大奇, 顏明重. 移動機器人路徑規劃技術綜述. 控制與決策, 2010, 25(7):961
    [9] 劉剛, 李笑, 康熙, 等. 基于GNSS的農田平整自動導航路徑規劃方法. 農業機械學報, 2016, 47(增刊1):21)

    Liu G, Li X, Kang X, et al. Automatic navigation path planning method for land leveling based on GNSS. <italic>Trans Chin Soc Agric Mach</italic>, 2016, 47(增刊1): 21
    [10] Sucan I A, Moll M, Kaveraki L E. The open motion planning library. <italic>IEEE Rob Autom Mag</italic>, 2012, 19(4): 72 doi: 10.1109/MRA.2012.2205651
    [11] Oksanen T, Visala A. Coverage path planning algorithms for agricultural field machines. <italic>J Field Rob</italic>, 2009, 26(8): 651 doi: 10.1002/rob.20300
    [12] Palleja T, Tresanchez M, Teixido M, et al. Modeling floor-cleaning coverage performances of some domestic mobile robots in a reduced scenario. <italic>Rob Autonom Syst</italic>, 2010, 58(1): 37 doi: 10.1016/j.robot.2009.07.030
    [13] Bircher A, Kamel M, Alexis K, et al. Receding horizon path planning for 3D exploration and surface inspection. <italic>Autonom Robots</italic>, 2018, 42(2): 291 doi: 10.1007/s10514-016-9610-0
    [14] Wang H J, Yu Y, Yuan Q B. Application of Dijkstra algorithm in robot path-planning // Second International Conference on Mechanic Automation & Control Engineering. Hohhot, 2011: 1067
    [15] Fu B, Chen L, Zhou Y T, et al. An improved A* algorithm for the industrial robot path planning with high success rate and short length. <italic>Rob Autonomous Syst</italic>, 2018, 106: 26 doi: 10.1016/j.robot.2018.04.007
    [16] Wei K, Ren B Y. A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved RRT algorithm. <italic>Sensors</italic>, 2018, 18(2): 571 doi: 10.3390/s18020571
    [17] Rashid R, Perumal N, Elamvazuthi I, et al. Mobile robot path planning using Ant Colony Optimization// 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA). Ipoh, 2016: 1
    [18] Zhang C, Li Q, Chen P, et al. Improved ant colony optimization based on particle swarm optimization and its application. <italic>J Univ Sci Technol Beijing</italic>, 2013, 35(7): 955

    張超, 李擎, 陳鵬, 等. 一種基于粒子群參數優化的改進蟻群算法及其應用. 北京科技大學學報, 2013, 35(7):955
    [19] Tian Z J, Gao X H, Zhang M X. Path planning based on the improved artificial potential field of coal mine dynamic target navigation. J China Coal Soc, 2016, 41(Suppl 2): 589

    田子建, 高學浩, 張夢霞. 基于改進人工勢場的礦井導航裝置路徑規劃. 煤炭學報, 2016, 41(增刊2): 589
    [20] Chen E K, Wu M H, Zhang Y J. Path planning for coal mine rescue robot in complex environment. <italic>Coal Technol</italic>, 2018, 37(10): 301

    陳爾奎, 吳梅花, 張英杰. 復雜環境下煤礦救災機器人路徑規劃. 煤炭技術, 2018, 37(10):301
    [21] Sun J, Chen Z H, Wang P, et al. Multi-region coverage method based on cost map and minimal tree for mobile robot. <italic>Robot</italic>, 2015, 37(4): 435

    孫建, 陳宗海, 王鵬, 等. 基于代價地圖和最小樹的移動機器人多區域覆蓋方法. 機器人, 2015, 37(4):435
    [22] Hameed I A, Bochtis D, S?rensen C A. An optimized field coverage planning approach for navigation of agricultural robots in fields involving obstacle areas. <italic>Int J Adv Rob Syst</italic>, 2013, 10(5): 1
    [23] Tang Q S. Application and research on tree structure based on depth-first algorithm. <italic>Comput Technol Dev</italic>, 2014, 24(9): 226

    唐青松. 深度優先算法在創建樹形結構中的應用研究. 計算機技術與發展, 2014, 24(9):226
    [24] Luo C M, Yang S X, Li X D, et al. Neural-dynamics-driven complete area coverage navigation through cooperation of multiple mobile robots. <italic>IEEE Trans Ind Electron</italic>, 2017, 64(1): 750 doi: 10.1109/TIE.2016.2609838
    [25] Yang S X, Meng M. An efficient neural network approach to dynamic robot motion planning. <italic>Neural Networks</italic>, 2000, 13(2): 143 doi: 10.1016/S0893-6080(99)00103-3
  • 加載中
圖(9) / 表(4)
計量
  • 文章訪問數:  1996
  • HTML全文瀏覽量:  1121
  • PDF下載量:  123
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-09-09
  • 刊出日期:  2020-09-20

目錄

    /

    返回文章
    返回