<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

分布式一致性最優化的梯度算法與收斂分析

梁舒 彭開香

梁舒, 彭開香. 分布式一致性最優化的梯度算法與收斂分析[J]. 工程科學學報, 2020, 42(4): 434-440. doi: 10.13374/j.issn2095-9389.2019.09.05.005
引用本文: 梁舒, 彭開香. 分布式一致性最優化的梯度算法與收斂分析[J]. 工程科學學報, 2020, 42(4): 434-440. doi: 10.13374/j.issn2095-9389.2019.09.05.005
LIANG Shu, PENG Kaixiang. Distributed gradient-based consensus optimization algorithm and convergence analysis[J]. Chinese Journal of Engineering, 2020, 42(4): 434-440. doi: 10.13374/j.issn2095-9389.2019.09.05.005
Citation: LIANG Shu, PENG Kaixiang. Distributed gradient-based consensus optimization algorithm and convergence analysis[J]. Chinese Journal of Engineering, 2020, 42(4): 434-440. doi: 10.13374/j.issn2095-9389.2019.09.05.005

分布式一致性最優化的梯度算法與收斂分析

doi: 10.13374/j.issn2095-9389.2019.09.05.005
基金項目: 國家自然科學基金資助項目(61903027,61873024)
詳細信息
    通訊作者:

    E-mail:sliang@ustb.edu.cn

  • 中圖分類號: TP27

Distributed gradient-based consensus optimization algorithm and convergence analysis

More Information
  • 摘要: 研究了多智能體網絡中受集合約束的一致性最優化問題,提出了基于原始–對偶梯度的定步長分布式算法。算法中包括步長在內的參數會影響收斂性,需要先進行收斂分析,再根據收斂條件設置合適的參數。本文首先針對一般的定步長迭代格式,提出一種基于李雅普諾夫函數的收斂分析范式,它類似于一般微分方程關于李雅普諾夫穩定的分析方法。然后,針對所考慮的分布式梯度算法,構造了合適的李雅普諾夫函數,并根據收斂條件得到了算法參數設定范圍,避免了繁冗復雜的分析論證。本文提出的理論與方法也為其他類型的分布式算法提供了一個框架性、系統性的論證方法。

     

  • 圖  1  信息分享關系圖

    Figure  1.  Information sharing graph

    圖  2  決策變量的更新軌跡

    Figure  2.  Trajectories of decision variables

    圖  3  對偶變量的更新軌跡

    Figure  3.  Trajectories of dual variables

    圖  4  李雅普諾夫函數的更新軌跡

    Figure  4.  Trajectory of the Lyapunov function

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Yang T, Yi X L, Wu J F, et al. A survey of distributed optimization. Ann Rev Control, 2019, 47: 278 doi: 10.1016/j.arcontrol.2019.05.006
    [2] Yi P, Hong Y G. Distributed cooperative optimization and its applications. Sci Sin Math, 2016, 46(10): 1547

    衣鵬, 洪奕光. 分布式合作優化及其應用. 中國科學: 數學, 2016, 46(10):1547
    [3] Peng K X, Zhang C F, Ma L, et al. System-levels-based holographic fault diagnosis for complex industrial processes. CIESC J, 2019, 70(2): 590

    彭開香, 張傳放, 馬亮, 等. 面向系統層級的復雜工業過程全息故障診斷. 化工學報, 2019, 70(2):590
    [4] Nedic A, Ozdaglar A, Parrilo P A. Constrained consensus and optimization in multi-agent networks. IEEE Trans Autom Control, 2010, 55(4): 922 doi: 10.1109/TAC.2010.2041686
    [5] Nedic A, Olshevsky A. Distributed optimization over time-varying directed graphs. IEEE Trans Autom Control, 2015, 60(3): 601 doi: 10.1109/TAC.2014.2364096
    [6] Nedic A, Olshevsky A. Stochastic gradient-push for strongly convex functions on time-varying directed graphs. IEEE Trans Autom Control, 2016, 61(12): 3936 doi: 10.1109/TAC.2016.2529285
    [7] Shi W, Ling Q, Wu G, et al. Extra: An exact first-order algorithm for decentralized consensus optimization. SIAM J Optim, 2015, 25(2): 944 doi: 10.1137/14096668X
    [8] Nedic A, Olshevsky A, Shi W. Achieving geometric convergence for distributed optimization over time-varying graphs. SIAM J Optim, 2017, 27(4): 2597 doi: 10.1137/16M1084316
    [9] Liu Q S, Yang S F, Hong Y G. Constrained consensus algorithms with fixed step size for distributed convex optimization over multi-agent networks. IEEE Trans Autom Control, 2017, 62(8): 4259 doi: 10.1109/TAC.2017.2681200
    [10] Lei J L, Chen H F, Fang H T. Primal-dual algorithm for distributed constrained optimization. Syst Control Lett, 2016, 96: 110 doi: 10.1016/j.sysconle.2016.07.009
    [11] Liang S, Wang L Y, Yin G. Exponential convergence of distributed primal-dual convex optimization algorithm without strong convexity. Automatica, 2019, 105: 298 doi: 10.1016/j.automatica.2019.04.004
    [12] Gharesifard B, Cortes J. Distributed continuous-time convex optimization on weight-balanced digraphs. IEEE Trans Autom Control, 2014, 59(3): 781 doi: 10.1109/TAC.2013.2278132
    [13] Zeng X L, Yi P, Hong Y G. Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach. IEEE Trans Autom Control, 2017, 62(10): 5227 doi: 10.1109/TAC.2016.2628807
    [14] Yang S F, Liu Q S, Wang J. A multi-agent system with a proportional-integral protocol for distributed constrained optimization. IEEE Trans Autom Control, 2017, 62(7): 3461 doi: 10.1109/TAC.2016.2610945
    [15] Deng Z H, Liang S, Hong Y G. Distributed continuous-time algorithms for resource allocation problems over weight-balanced digraphs. IEEE Trans Cybern, 2018, 48(11): 3116 doi: 10.1109/TCYB.2017.2759141
    [16] Liang S, Zeng X L, Hong Y G. Distributed nonsmooth optimization with coupled inequality constraints via modified Lagrangian function. IEEE Trans Autom Control, 2018, 63(6): 1753 doi: 10.1109/TAC.2017.2752001
    [17] Hiriart-Urruty J B, Lemaréchal C. Convex Analysis and Minimization Algorithms I: Fundamentals. Springer Science & Business Media, 2013
    [18] Nesterov Y. Lectures on Convex Optimization. Springer, 2018
    [19] Godsil C, Royle G F. Algebraic Graph Theory. Springer Science & Business Media, 2013
  • 加載中
圖(4)
計量
  • 文章訪問數:  2978
  • HTML全文瀏覽量:  2052
  • PDF下載量:  130
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-09-05
  • 刊出日期:  2020-04-01

目錄

    /

    返回文章
    返回