Recent progress and future research prospects on the plastic instability of medium-Mn steels: a review
-
摘要: 中錳鋼是近年來出現的新型鋼鐵材料,因為其優異的力學性能被認為是第三代汽車用鋼,但是該鋼的一個突出特點就是在拉伸變形時會發生塑性失穩,導致材料結構穩定性減弱甚至在某些情況下過早失效,這已然成為限制中錳鋼商業化使用的關鍵問題。塑性失穩包括出現不連續屈服和屈服平臺(呂德斯應變)以及流變應力鋸齒(PLC效應)。兩者都受到成分、晶粒形貌、退火工藝、組織構成等因素的影響,也均與拉伸變形過程中 奧氏體相變轉變存在或強或弱的相關性,使得這一塑性失穩現象的機理更為復雜化,因而在近期各種觀點迥異的理論解釋也相繼被提出。本文綜述了相關研究中各種因素對呂德斯應變和PLC效應的影響結果及相關理論解釋,并著重指出了各理論解釋的局限性及未來的研究思路。最后,基于現有研究和預研實驗對在保證中錳鋼超高強度和優良塑性的前提下消除中錳鋼塑性失穩現象的可行途徑進行了展望。Abstract: Lightweight materials are desired for energy saving and emission reduction of automobiles. A promising material for automobile parts is advanced high strength steel (AHSS). A recently developed material called medium-Mn steel, with excellent mechanical properties, has attracted increasing attention as the third-generation AHSS for automotive processing. However, medium-Mn steel is disadvantaged by plastic instability during tensile tests. This plastic instability is usually associated with localized and propagative bands on the material surface, which cause an unexpected surface roughening effect and premature failure in the most unfavorable cases. Therefore, plastic instability has severely impeded the commercialization of medium-Mn steels. The phenomenon manifests as discontinuous yielding followed by a yielding plateau (the Lüders strain), along with flow stress serrations (the Portevin-Le Chatelier (PLC) effect). Both effects are influenced by the composition, annealing process, and microstructure (phase morphology and constituents) of the steel. Both effects are also correlated with the austenite-to-martensite transformation during deformation to a greater or lesser extent, which is rarely observed in metallic materials. Consequently, the mechanisms of both effects are complicated and explainable by diverse theories. This paper reviewed the current research results on the influences of various factors on the Lüders strain and PLC effect, and discussed their corresponding mechanisms. This paper particularly emphasized the limitations of the existing theoretical explanations and proposed future researches to elucidate the existing disputes. Based on the current research and our preliminary experiment, this paper finally suggested ways of eliminating the plastic instability of medium-Mn steel, while guaranteeing ultrahigh strength, and excellent ductility. These improvements will drive the future development of this field.
-
圖 1 馬氏體和冷軋板初始組織在不同溫度臨界退火后的應力?應變曲線.(a) 0.1%C?5%Mn鋼;(b) 圖(a)屈服平臺放大圖;(c) 0.2%C?5%Mn鋼;(d) 圖(c)屈服平臺放大圖[16]
Figure 1. Engineer stress?strain curves of martensitic and cold rolled initial structures for steels after intercritical annealing at various temperatures: (a) 0.1%C?5%Mn steel; (b) the magnification views of the yield plateau in (a); (c) 0.2%C?5%Mn steel; (d) the magnification views of the yield plateau in (c)[16]
圖 2 Fe?0.055%C?5.6%Mn?0.49%Si?2.2%Al鋼冷軋板在不同制度退火后的工程應力?應變曲線和變形過程中奧氏體體積分數的變化. (a) 700 ℃退火10 min;(b) 740 ℃退火10 min[18]
Figure 2. Engineer stress?strain curves and the changing of austenite volume fraction during deformation for the cold rolled sheet of Fe?0.055%C?5.6%Mn?0.49%Si?2.2%Al steel after annealing at various temperatures: (a) annealed at 700 ℃ for 10 min; (b) annealed at 740 ℃ for 10 min[18]
圖 3 Fe?7.5%Mn?1.5%Al?0.2%C鋼冷軋板在650 ℃和665 ℃退火后的拉伸應力?應變曲線(a),拉伸實驗前后的奧氏體體積分數(b),以及呂德斯帶傳播前后奧氏體的轉變量(c)[22]
Figure 3. Stress?strain curves of the cold rolled sheet for Fe?7.5%Mn?1.5%Al?0.2%C steel after annealing at 650 ℃ and 665 ℃ (a), the volume fraction of austenite before and after tensile deformation (b), and the volume fraction of austenite transformed before and after swept by Lüders band (c)[22]
圖 4 Fe?0.2%C?10.2%Mn?2.8%Al?1%Si鋼冷軋板退火后顯微組織的電子背散射衍射(EBSD)相分布圖(a),拉伸應力?應變曲線(b),沿拉伸方向呂德斯帶的形核和傳播(c),三點彎曲ECCI原位表征奧氏體/鐵素體相界面上的位錯增殖過程(d),以及其相應的示意圖(e)[25]
Figure 4. Electron backscattered scattering detection (EBSD) phase map for the microstructures of cold rolled sheet of Fe?0.2%C?10.2%Mn?2.8%Al?1%Si after annealing (a), stress?strain curves (b), nucleation and propagation of Lüders band (c), multiplication of dislocation on austenite/ferrite interfaces examined by In-situ three-point bending ECCI (d), and the corresponding sketch map (e)[25]
圖 6 Fe?0.05%C?12%Mn?3%Al鋼熱軋退火試樣拉伸變形時各相之間的應變配分和拉伸力學性能. (a) 未變形試樣顯微組織的電子背散射衍射(EBSD)相分布圖;(b~e) 拉伸變形至1.8%,4.3%,8.4%,14%真應變時各相之間的范式等效應變分布圖;(f)工程應力?應變曲線;(g) 拉伸變形過程中回火馬氏體和殘余奧氏體或新鮮馬氏體之間的應變配分[29]
Figure 6. Strain partition and mechanical properties of the hot rolled Fe?0.05%C?12%Mn?3%Al steel after annealing: (a) the electron backscattered scattering detection (EBSD) phase distribution map for the microstructures before deformation; (b?e) von Miss strain distribution between different phases since tensile test interrupted at 1.8%, 4.3%, 8.4%, 14% true strain; (f) engineer stress?strain curve; (g) strain distribution between tempered martenstie, retained austenite or fresh martensite[29]
圖 8 Fe?0.14%C?7%Mn?0.23%Si鋼冷軋退火試樣的工程應力?應變曲線,呂德斯和PLC帶形核和傳播時應變和熱量的變化(a),以及拉伸變形時的奧氏體轉變量(b)[42]
Figure 8. Engineer stress?strain curves of the cooled rolled sheet after annealing for Fe?0.14%C?7%Mn?0.23%Si steel, the changing of strain and the heating during the nucleation and propagation of Lüders and PLC bands (a), and the amount of austenite transformed during tensile deformation (b)[42]
圖 9 Fe–C–Mn和Fe–C–Mn–N鋼的工程應力?應變曲線(a),(a)中藍色矩形區域的放大圖(b),Fe–C–Mn鋼(c)和Fe–C–Mn–N鋼(d)的應力鋸齒類型和PLC帶的形核位置[45]
Figure 9. Engineer stress?strain curves (a) of Fe–C–Mn and Fe–C–Mn–N steels, magnification view (b) of the area marked by blue rectangle in (a); the different types of stress serrations and the nucleation sites of PLC bands for Fe–C–Mn steels (c) and Fe–C–Mn–N steels (d)[45]
259luxu-164 -
參考文獻
[1] Xu H F, Zhao J, Cao W Q, et al. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C-5Mn). Mater Sci Eng A, 2012, 532: 435 doi: 10.1016/j.msea.2011.11.009 [2] Cao W Q, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe?0.2C?5Mn steel processed by ART-annealing. Mater Sci Eng A, 2011, 528(22-23): 6661 doi: 10.1016/j.msea.2011.05.039 [3] Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scripta Mater, 2010, 63(8): 815 doi: 10.1016/j.scriptamat.2010.06.023 [4] Hu B, Luo H W, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review. J Mater Sci Technol, 2017, 33(12): 1457 doi: 10.1016/j.jmst.2017.06.017 [5] Lee S, De Cooman B C. Effect of the intercritical annealing temperature on the mechanical properties of 10 pct Mn multi-phase steel. Metall Mater Trans A, 2014, 45(11): 5009 doi: 10.1007/s11661-014-2449-0 [6] He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science, 2017, 357(6355): 1029 doi: 10.1126/science.aan0177 [7] Wang X G, Wang L, Huang M X. Kinematic and thermal characteristics of Lüders and Portevin-Le Chatelier bands in a medium Mn transformation-induced plasticity steel. Acta Mater, 2017, 124: 17 doi: 10.1016/j.actamat.2016.10.069 [8] Cottrell A H, Bilby B A. Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc Sect A, 1949, 62(1): 49 doi: 10.1088/0370-1298/62/1/308 [9] Van den Beukel A. Theory of the effect of dynamic strain aging on mechanical properties. Phys Status Solidi A, 1975, 30(1): 197 doi: 10.1002/pssa.2210300120 [10] Wilson D V. Grain-size dependence of discontinuous yielding in strain-aged steels. Acta Metall, 1968, 16(5): 743 doi: 10.1016/0001-6160(68)90146-6 [11] Varin R A, Mazurek B, Himbeault D. Discontinuous yielding in ultrafine-grained austenitic stainless steels. Mater Sci Eng, 1987, 94: 109 doi: 10.1016/0025-5416(87)90326-0 [12] Akama D, Nakada N, Tsuchiyama T, et al. Discontinuous yielding induced by the addition of nickel to interstitial-free steel. Scripta Mater, 2014, 82: 13 doi: 10.1016/j.scriptamat.2014.03.012 [13] Hahn G T. A model for yielding with special reference to the yield-point phenomena of iron and related bcc metals. Acta Metall, 1962, 10(8): 727 doi: 10.1016/0001-6160(62)90041-X [14] Johnston W G. Yield points and delay times in single crystals. J Appl Phys, 1962, 33(9): 2716 doi: 10.1063/1.1702538 [15] Emadoddin E, Akbarzadeh A, Daneshi G H. Correlation between Luder strain and retained austenite in TRIP-assisted cold rolled steel sheets. Mater Sci Eng A, 2007, 447(1-2): 174 doi: 10.1016/j.msea.2006.10.046 [16] Luo H W, Dong H, Huang M X. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels. Mater Des, 2015, 83: 42 doi: 10.1016/j.matdes.2015.05.085 [17] Hu B, He B B, Cheng G J, et al. Super-high-strength and formable medium Mn steel manufactured by warm rolling process. Acta Mater, 2019, 174: 131 doi: 10.1016/j.actamat.2019.05.043 [18] Ryu J H, Kim J I, Kim H S, et al. Austenite stability and heterogeneous deformation in fine-grained transformation-induced plasticity-assisted steel. Scripta Mater, 2013, 68(12): 933 doi: 10.1016/j.scriptamat.2013.02.026 [19] Ma J W, Lu Q, Sun L, et al. Two-step intercritical annealing to eliminate Lüders band in a strong and ductile medium Mn steel. Metall Mater Trans A, 2018, 49(10): 4404 doi: 10.1007/s11661-018-4791-0 [20] Sun B H, Fazeli F, Scott C, et al. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions. Mater Sci Eng A, 2018, 729: 496 doi: 10.1016/j.msea.2018.04.115 [21] Zhang Y, Ding H. Ultrafine also can be ductile: on the essence of Lüders band elongation in ultrafine-grained medium manganese steel. Mater Sci Eng A, 2018, 733: 220 doi: 10.1016/j.msea.2018.07.052 [22] Li Z C, Ding H, Misra R D K, et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands. Mater Sci Eng A, 2017, 679: 230 doi: 10.1016/j.msea.2016.10.042 [23] Cai Z H, Jing S Y, Li H Y, et al. The influence of microstructural characteristics on yield point elongation phenomenon in Fe?0.2C?11Mn?2Al steel. Mater Sci Eng A, 2019, 739: 17 doi: 10.1016/j.msea.2018.09.114 [24] Wang X G, He B B, Liu C H, et al. Extraordinary Lüders?strain?rate in medium Mn steels. Materialia, 2019, 6: 100288 doi: 10.1016/j.mtla.2019.100288 [25] Sun B H, Ma Y, Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite?ferrite interface. Acta Mater, 2019, 178: 10 doi: 10.1016/j.actamat.2019.07.043 [26] Hu B, Luo H W. A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel. Acta Mater, 2019, 176: 250 doi: 10.1016/j.actamat.2019.07.014 [27] Hu B, Luo H W. Microstructures and mechanical properties of 7Mn steel manufactured by different rolling processes. Metals, 2017, 7(11): 464 doi: 10.3390/met7110464 [28] Han J, Lee S J, Jung J G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe?9Mn?0.05C steel. Acta Mater, 2014, 78: 369 doi: 10.1016/j.actamat.2014.07.005 [29] Dutta A, Ponge D, Sandl?bes S, et al. Strain partitioning and strain localization in medium manganese steels measured by in situ microscopic digital image correlation. Materialia, 2019, 5: 100252 doi: 10.1016/j.mtla.2019.100252 [30] Steineder K, Krizan D, Schneider R, et al. On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels. Acta Mater, 2017, 139: 39 doi: 10.1016/j.actamat.2017.07.056 [31] Zhang M H, Li L F, Ding J, et al. Temperature-dependent micromechanical behavior of medium-Mn transformation-induced-plasticity steel studied by in situ synchrotron X-ray diffraction. Acta Mater, 2017, 141: 294 doi: 10.1016/j.actamat.2017.09.030 [32] Wang X G, Huang M X. Temperature dependence of Lüders strain and its correlation with martensitic transformation in a medium Mn transformation-induced plasticity steel. J Iron Steel Res Int, 2017, 24(11): 1073 doi: 10.1016/S1006-706X(17)30156-5 [33] Gonzalez B M, Marchi L A, da Fonseca E J, et al. Measurement of dynamic strain aging in pearlitic steels by tensile test. ISIJ Int, 2003, 43(3): 428 doi: 10.2355/isijinternational.43.428 [34] Halim H, Wilkinson D S, Niewczas M. The Portevin-Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy. Acta Mater, 2007, 55(12): 4151 doi: 10.1016/j.actamat.2007.03.007 [35] Liang X, McDermid J R, Bouaziz O, et al. Microstructural evolution and strain hardening of Fe?24Mn and Fe?30Mn alloys during tensile deformation. Acta Mater, 2009, 57(13): 3978 doi: 10.1016/j.actamat.2009.05.003 [36] Liang Z Y, Li Y Z, Huang M X. The respective hardening contributions of dislocations and twins to the flow stress of a twinning-induced plasticity steel. Scripta Mater, 2016, 112: 28 doi: 10.1016/j.scriptamat.2015.09.003 [37] Lee S J, Kim J, Kane S N, et al. On the origin of dynamic strain aging in twinning-induced plasticity steels. Acta Mater, 2011, 59(17): 6809 doi: 10.1016/j.actamat.2011.07.040 [38] Sun B H, Vanderesse N, Fazeli F, et al. Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel. Scripta Mater, 2017, 133: 9 doi: 10.1016/j.scriptamat.2017.01.022 [39] Sun B H, Fazeli F, Scott C, et al. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions. Mater Sci Eng A, 2018, 729: 496 doi: 10.1016/j.msea.2018.04.115 [40] Yang F, Luo H W, Pu E X, et al. On the characteristics of Portevin-Le Chatelier bands in cold-rolled 7Mn steel showing transformation-induced plasticity. Int J Plast, 2018, 103: 188 doi: 10.1016/j.ijplas.2018.01.010 [41] Grzegorczyk B, Koz?owska A, Morawiec M, et al. Effect of deformation temperature on the Portevin-Le Chatelier effect in medium-Mn steel. Metals, 2019, 9(1): 2 [42] Wang X G, Wang L, Huang M X. Kinematic and thermal characteristics of Lüders and Portevin-Le Chatelier bands in a medium Mn transformation-induced plasticity steel. Acta Mater, 2017, 124: 17 doi: 10.1016/j.actamat.2016.10.069 [43] Kim D W, Ryu W S, Hong J H, et al. Effect of nitrogen on the dynamic strain ageing behaviour of type 316L stainless steel. J Mater Sci, 1998, 33(3): 675 doi: 10.1023/A:1004381510474 [44] Bracke L, Penning J, Akdut N. The influence of Cr and N additions on the mechanical properties of FeMnC steels. Metall Mater Trans A, 2007, 38(3): 520 doi: 10.1007/s11661-006-9084-3 [45] Lee S, Kim J, Lee S J, et al. Effect of nitrogen on the critical strain for dynamic strain aging in high-manganese twinning-induced plasticity steel. Scripta Mater, 2011, 65(6): 528 doi: 10.1016/j.scriptamat.2011.06.017 [46] Lee S, Kim J, Lee S J, et al. Effect of Cu addition on the mechanical behavior of austenitic twinning-induced plasticity steel. Scripta Mater, 2011, 65(12): 1073 doi: 10.1016/j.scriptamat.2011.09.019 [47] Choi J H, Jo M C, Lee H, et al. Cu addition effects on TRIP to TWIP transition and tensile property improvement of ultra-high-strength austenitic high-Mn steels. Acta Mater, 2019, 166: 246 doi: 10.1016/j.actamat.2018.12.044 [48] Shun T, Wan C M, Byrne J G. A study of work hardening in austenitic Fe?Mn?C and Fe?Mn?Al?C alloys. Acta Metall Mater, 1992, 40(12): 3407 doi: 10.1016/0956-7151(92)90054-I [49] Shun T S, Wan C M, Byrne J G. Serrated flow in austenitic Fe?Mn?C and Fe?Mn?Al?C alloys. Scripta Metall Mater, 1991, 25(8): 1769 doi: 10.1016/0956-716X(91)90302-H [50] He B B, Huang M X. Simultaneous increase of both strength and ductility of medium Mn transformation-induced plasticity steel by vanadium alloying. Metall Mater Trans A, 2018, 49(5): 1433 doi: 10.1007/s11661-018-4517-3 [51] Zhang W. Deformation Behavior of GH4169 Superalloy under the High Current Density Electropulsing [Dissertation]. Shenyang: Northeastern University, 2010張偉. 高密度電脈沖下GH4169合金塑性變形為研究[學位論文]. 沈陽: 東北大學, 2010 [52] Zhao Y G, Ma B D, Guo H C, et al. Electropulsing strengthened 2 GPa boron steel with good ductility. Mater Des, 2013, 43: 195 doi: 10.1016/j.matdes.2012.06.060 [53] Chen M J. Effect of Electropulsing Treatment on the Microstructure and Mechanical Properties of Cu-enriched Nanoscale Precipitate-Strengthened Steel [Dissertation]. Harbin: Harbin University of Technology, 2018陳明江. 電脈沖處理對富銅納米相強化鋼組織結構及力學性能的影響[學位論文]. 哈爾濱: 哈爾濱工程大學, 2018 [54] Zhu R F, Jiang Y B, Guan L, et al. Difference in recrystallization between electropulsing-treated and furnace-treated NiTi alloy. J Alloys Compd, 2016, 658: 548 doi: 10.1016/j.jallcom.2015.10.239 -