<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于外部單目視覺的仿生撲翼飛行器室內定高控制

付強 張樹禹 王久斌 馮富森

付強, 張樹禹, 王久斌, 馮富森. 基于外部單目視覺的仿生撲翼飛行器室內定高控制[J]. 工程科學學報, 2020, 42(2): 249-256. doi: 10.13374/j.issn2095-9389.2019.08.03.002
引用本文: 付強, 張樹禹, 王久斌, 馮富森. 基于外部單目視覺的仿生撲翼飛行器室內定高控制[J]. 工程科學學報, 2020, 42(2): 249-256. doi: 10.13374/j.issn2095-9389.2019.08.03.002
FU Qiang, ZHANG Shu-yu, WANG Jiu-bin, FENG Fu-sen. Indoor fixed-height control for bio-inspired flapping-wing aerial vehicles based on off-board monocular vision[J]. Chinese Journal of Engineering, 2020, 42(2): 249-256. doi: 10.13374/j.issn2095-9389.2019.08.03.002
Citation: FU Qiang, ZHANG Shu-yu, WANG Jiu-bin, FENG Fu-sen. Indoor fixed-height control for bio-inspired flapping-wing aerial vehicles based on off-board monocular vision[J]. Chinese Journal of Engineering, 2020, 42(2): 249-256. doi: 10.13374/j.issn2095-9389.2019.08.03.002

基于外部單目視覺的仿生撲翼飛行器室內定高控制

doi: 10.13374/j.issn2095-9389.2019.08.03.002
基金項目: 裝備預研教育部聯合基金資助項目(6141A02033339);中央高校基本科研業務費專項資金資助項目(FRF-TP-18-100A1);國家自然科學基金資助項目(61803025)
詳細信息
    通訊作者:

    E-mail: fuqiang@ustb.edu.cn

  • 中圖分類號: TP242.6

Indoor fixed-height control for bio-inspired flapping-wing aerial vehicles based on off-board monocular vision

More Information
  • 摘要: 針對撲翼飛行器的定高飛行,設計了基于外部單目視覺的室內定高控制系統:通過外部單目相機獲取撲翼飛行器的飛行圖像,基于Qt編寫的地面站軟件接收圖像并利用基于OpenCV的圖像處理算法檢測撲翼飛行器上的發光標識點,獲得標識點在圖像上的像素坐標;基于卡爾曼濾波器(KF)建立標識點像素坐標的運動狀態估計器,降低環境噪聲干擾并解決了標識點被短暫遮擋的問題;分別建立常規PID和單神經元PID控制系統,通過藍牙控制撲翼飛行器的電機轉速,實現了基于圖像的撲翼飛行器室內定高飛行。對比實驗結果表明,本文設計的定高飛行控制系統可以使撲翼飛行器標記點的圖像坐標保持在外部單目相機圖像的中心橫線處。針對階躍響應信號,單神經元PID控制系統的響應速度比常規PID控制系統響應速度稍慢一些,但是控制精度明顯優于常規PID控制器,最大相對誤差為3%。

     

  • 圖  1  問題描述示意圖

    Figure  1.  Illustration of the problem formulation

    圖  2  X翼撲翼飛行器

    Figure  2.  FWAV with the X-wing

    圖  3  飛行控制電路板

    Figure  3.  Flight control circuit board

    圖  4  單目相機成像原理圖

    Figure  4.  Imaging principle of the monocular camera

    圖  5  視覺檢測流程圖

    Figure  5.  Flowchart of visual detection

    圖  6  觀測結果處理流程圖

    Figure  6.  Flowchart of observation result processing

    圖  7  定高控制系統示意圖

    Figure  7.  Illustration of the fixed-height control system

    圖  8  控制系統結構框圖

    Figure  8.  Structure diagram of the control system

    圖  9  地面站界面

    Figure  9.  Software interface of the ground station

    圖  10  實物實驗圖

    Figure  10.  Physical experiment

    圖  11  PID控制飛行高度曲線

    Figure  11.  Flight height curve of the PID controller

    表  1  視覺檢測各部分耗時表

    Table  1.   Time cost of visual detection

    環節耗時/ms
    圖像采集4.16
    高斯濾波1.94
    HSV變換1.95
    圖像分割1.73
    取最大輪廓0.03
    計算質心0.02
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] He W, Ding S Q, Sun C Y. Research progress on modeling and control of flapping-wing air vehicles. Acta Automatica Sinica, 2017, 43(5): 685

    賀威, 丁施強, 孫長銀. 撲翼飛行器的建模與控制研究進展. 自動化學報, 2017, 43(5):685
    [2] Mackenzie D. A flapping of wings. Science, 2012, 335(6075): 1430 doi: 10.1126/science.335.6075.1430
    [3] Jackowski Z J. Design and Construction of An Autonomous Ornithopter [Dissertation]. Massachusetts: Massachusetts Institute of Technology, 2009
    [4] Ryu S, Kwon U, Kim H J. Autonomous flight and vision-based target tracking for a flapping-wing MAV // 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, 2016: 5645
    [5] Lin S H, Hsiao F Y, Chen C L, et al. Altitude control of flapping-wing MAV using vision-based navigation // Proceedings of the 2010 American Control Conference. Baltimore, 2010: 21
    [6] Yang W Q, Wang L G, Song B F. Dove: a biomimetic flapping-wing micro air vehicle. Int J Micro Air Vehicles, 2018, 10(1): 70 doi: 10.1177/1756829317734837
    [7] He W, Huang H F, Chen Y N, et al. Development of an autonomous flapping-wing aerial vehicle. Sci China Inf Sci, 2017, 60(6): 063201 doi: 10.1007/s11432-017-9077-1
    [8] Zeng R, Ang H S. Aerodynamic computation of flapping-wing simulating bird wings. J Nanjing Univ Aeronautics Astronautics, 2003, 35(1): 6 doi: 10.3969/j.issn.1005-2615.2003.01.002

    曾銳, 昂海松. 仿鳥復合振動的撲翼氣動分析. 南京航空航天大學學報, 2003, 35(1):6 doi: 10.3969/j.issn.1005-2615.2003.01.002
    [9] De Croon G C H E, Per?in M, Remes B D W, et al. The DelFly. Dordrecht: Springer Netherlands, 2016
    [10] Wu X L, Shi Z Y, Zhong Y S. An overview of vision-based UAV navigation. J Syst Simul, 2010, 22(Suppl 1): 62

    吳顯亮, 石宗英, 鐘宜生. 無人機視覺導航研究綜述. 系統仿真學報, 2010, 22(增刊1): 62
    [11] Han J G, Shoa L, Xu D, et al. Enhanced computer vision with Microsoft Kinect sensor: a review. IEEE Trans Cybernetics, 2013, 43(5): 1318 doi: 10.1109/TCYB.2013.2265378
    [12] Ni Z S, Gu Y, Liu Q L, et al. Flexible calibration method for binocular stereo vision in large field of view. Opt Precision Eng, 2017, 25(7): 1882

    倪章松, 顧藝, 柳慶林, 等. 大視場雙目立體視覺柔性標定. 光學精密工程, 2017, 25(7):1882
    [13] Liu Y F, Guo H, Nie D J, et al. Analysis on measurement accuracy of binocular stereo vision system. J Donghua Univ Nat Sci, 2012, 38(5): 572

    劉亞菲, 郭慧, 聶冬金, 等. 雙目立體視覺系統測量精度的分析. 東華大學學報: 自然科學版, 2012, 38(5):572
    [14] Zhao P, Li Y K, Tian S B, et al. Theoretical and experimental research of structural parameters of binocular vision measuring system. J Mach Des, 2013, 30(2): 64 doi: 10.3969/j.issn.1001-2354.2013.02.015

    趙萍, 李永奎, 田素博, 等. 雙目視覺測量系統結構參數理論與試驗研究. 機械設計, 2013, 30(2):64 doi: 10.3969/j.issn.1001-2354.2013.02.015
    [15] Windolf M, G?tzen N, Morlock M. Systematic accuracy and precision analysis of video motion capturing systems—exemplified on the Vicon-460 system. J Biomech, 2008, 41(12): 2776 doi: 10.1016/j.jbiomech.2008.06.024
    [16] Ma S D, Zhang Z Y. Computer Vision: Fundamentals of Computational Theory and Algorithms. Beijing: Science Press, 1998

    馬頌德, 張正友. 計算機視覺?計算理論與算法基礎. 北京: 科學出版社, 1998
    [17] Ding J, Xu Y M. Single neuron adaptive PID controller and its applications. Control Eng China, 2004, 11(1): 27 doi: 10.3969/j.issn.1671-7848.2004.01.008

    丁軍, 徐用懋. 單神經元自適應PID控制器及其應用. 控制工程, 2004, 11(1):27 doi: 10.3969/j.issn.1671-7848.2004.01.008
  • 加載中
圖(11) / 表(1)
計量
  • 文章訪問數:  1730
  • HTML全文瀏覽量:  712
  • PDF下載量:  74
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-08-03
  • 刊出日期:  2020-02-01

目錄

    /

    返回文章
    返回