Indoor fixed-height control for bio-inspired flapping-wing aerial vehicles based on off-board monocular vision
-
摘要: 針對撲翼飛行器的定高飛行,設計了基于外部單目視覺的室內定高控制系統:通過外部單目相機獲取撲翼飛行器的飛行圖像,基于Qt編寫的地面站軟件接收圖像并利用基于OpenCV的圖像處理算法檢測撲翼飛行器上的發光標識點,獲得標識點在圖像上的像素坐標;基于卡爾曼濾波器(KF)建立標識點像素坐標的運動狀態估計器,降低環境噪聲干擾并解決了標識點被短暫遮擋的問題;分別建立常規PID和單神經元PID控制系統,通過藍牙控制撲翼飛行器的電機轉速,實現了基于圖像的撲翼飛行器室內定高飛行。對比實驗結果表明,本文設計的定高飛行控制系統可以使撲翼飛行器標記點的圖像坐標保持在外部單目相機圖像的中心橫線處。針對階躍響應信號,單神經元PID控制系統的響應速度比常規PID控制系統響應速度稍慢一些,但是控制精度明顯優于常規PID控制器,最大相對誤差為3%。Abstract: The flapping-wing aerial vehicle (FWAV) is a new kind of aerial vehicle that imitates the flapping wings of birds or insects during flight and has the advantages of flexible flight, high flight efficiency, and good concealment compared with the fixed-wing and the rotary-wing aerial vehicles. Therefore, the FWAV has attracted considerable attention in recent years. However, the flight mechanism of the FWAV is complex and has many motion parameters with strong coupling. Thus, establishing a precise and practical motion model is difficult. At the same time, given the limited weight and load capacity of small FWAVs, it cannot carry accurate but heavy positioning equipment. Thus, many problems in autonomous flight control of FWAVs need to be addressed at this stage. For the fixed-height flight of FWAVs, an indoor fixed-height control system based on off-board monocular vision was designed. First, image sequences of the FWAV were obtained using the off-board monocular camera. Then, the ground station software based on Qt received the images, detected the light-emitting feature point on the FWAV, and obtained the pixel coordinates of the feature point on each image using the OpenCV image processing algorithms. On the basis of the Kalman filter, the image state estimator of the feature point was established to reduce the environmental interference and solve the temporal missing data problem of the feature point. Finally, the conventional and single-neuron PID control systems were established, where the motor speed of the FWAV was controlled by Bluetooth, to achieve image-based indoor fixed-height flight of the FWAV. Experimental results show that the fixed-height flight control system designed in this study can keep the image coordinates of the feature point of the FWAV at the center of the camera image. For the step signal, the response speed of the single-neuron PID control system is slightly slower than that of the conventional PID control system. However, the control accuracy of the single-neuron PID control system is better than that of the conventional PID controller, with a maximum relative error of 3%.
-
Key words:
- monocular vision /
- flapping-wing aerial vehicle /
- fixed height control /
- visual servoing /
- image error
-
表 1 視覺檢測各部分耗時表
Table 1. Time cost of visual detection
環節 耗時/ms 圖像采集 4.16 高斯濾波 1.94 HSV變換 1.95 圖像分割 1.73 取最大輪廓 0.03 計算質心 0.02 259luxu-164 -
參考文獻
[1] He W, Ding S Q, Sun C Y. Research progress on modeling and control of flapping-wing air vehicles. Acta Automatica Sinica, 2017, 43(5): 685賀威, 丁施強, 孫長銀. 撲翼飛行器的建模與控制研究進展. 自動化學報, 2017, 43(5):685 [2] Mackenzie D. A flapping of wings. Science, 2012, 335(6075): 1430 doi: 10.1126/science.335.6075.1430 [3] Jackowski Z J. Design and Construction of An Autonomous Ornithopter [Dissertation]. Massachusetts: Massachusetts Institute of Technology, 2009 [4] Ryu S, Kwon U, Kim H J. Autonomous flight and vision-based target tracking for a flapping-wing MAV // 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, 2016: 5645 [5] Lin S H, Hsiao F Y, Chen C L, et al. Altitude control of flapping-wing MAV using vision-based navigation // Proceedings of the 2010 American Control Conference. Baltimore, 2010: 21 [6] Yang W Q, Wang L G, Song B F. Dove: a biomimetic flapping-wing micro air vehicle. Int J Micro Air Vehicles, 2018, 10(1): 70 doi: 10.1177/1756829317734837 [7] He W, Huang H F, Chen Y N, et al. Development of an autonomous flapping-wing aerial vehicle. Sci China Inf Sci, 2017, 60(6): 063201 doi: 10.1007/s11432-017-9077-1 [8] Zeng R, Ang H S. Aerodynamic computation of flapping-wing simulating bird wings. J Nanjing Univ Aeronautics Astronautics, 2003, 35(1): 6 doi: 10.3969/j.issn.1005-2615.2003.01.002曾銳, 昂海松. 仿鳥復合振動的撲翼氣動分析. 南京航空航天大學學報, 2003, 35(1):6 doi: 10.3969/j.issn.1005-2615.2003.01.002 [9] De Croon G C H E, Per?in M, Remes B D W, et al. The DelFly. Dordrecht: Springer Netherlands, 2016 [10] Wu X L, Shi Z Y, Zhong Y S. An overview of vision-based UAV navigation. J Syst Simul, 2010, 22(Suppl 1): 62吳顯亮, 石宗英, 鐘宜生. 無人機視覺導航研究綜述. 系統仿真學報, 2010, 22(增刊1): 62 [11] Han J G, Shoa L, Xu D, et al. Enhanced computer vision with Microsoft Kinect sensor: a review. IEEE Trans Cybernetics, 2013, 43(5): 1318 doi: 10.1109/TCYB.2013.2265378 [12] Ni Z S, Gu Y, Liu Q L, et al. Flexible calibration method for binocular stereo vision in large field of view. Opt Precision Eng, 2017, 25(7): 1882倪章松, 顧藝, 柳慶林, 等. 大視場雙目立體視覺柔性標定. 光學精密工程, 2017, 25(7):1882 [13] Liu Y F, Guo H, Nie D J, et al. Analysis on measurement accuracy of binocular stereo vision system. J Donghua Univ Nat Sci, 2012, 38(5): 572劉亞菲, 郭慧, 聶冬金, 等. 雙目立體視覺系統測量精度的分析. 東華大學學報: 自然科學版, 2012, 38(5):572 [14] Zhao P, Li Y K, Tian S B, et al. Theoretical and experimental research of structural parameters of binocular vision measuring system. J Mach Des, 2013, 30(2): 64 doi: 10.3969/j.issn.1001-2354.2013.02.015趙萍, 李永奎, 田素博, 等. 雙目視覺測量系統結構參數理論與試驗研究. 機械設計, 2013, 30(2):64 doi: 10.3969/j.issn.1001-2354.2013.02.015 [15] Windolf M, G?tzen N, Morlock M. Systematic accuracy and precision analysis of video motion capturing systems—exemplified on the Vicon-460 system. J Biomech, 2008, 41(12): 2776 doi: 10.1016/j.jbiomech.2008.06.024 [16] Ma S D, Zhang Z Y. Computer Vision: Fundamentals of Computational Theory and Algorithms. Beijing: Science Press, 1998馬頌德, 張正友. 計算機視覺?計算理論與算法基礎. 北京: 科學出版社, 1998 [17] Ding J, Xu Y M. Single neuron adaptive PID controller and its applications. Control Eng China, 2004, 11(1): 27 doi: 10.3969/j.issn.1671-7848.2004.01.008丁軍, 徐用懋. 單神經元自適應PID控制器及其應用. 控制工程, 2004, 11(1):27 doi: 10.3969/j.issn.1671-7848.2004.01.008 -