Genetic optimization model of steelmaking?continuous casting production scheduling based on the “furnace?caster coordinating” strategy
-
摘要: 針對煉鋼?連鑄過程因車間布局復雜造成工序間鋼水交叉供應頻繁、等待時間過長以及天車調度困難等問題,本文建立以計劃內所有爐次總等待時間最小為優化目標的煉鋼?連鑄過程生產調度模型,并采用改進的遺傳算法求解該模型。在遺傳操作過程中,引入“爐?機對應”調控策略以改善初始種群質量,并根據轉爐(精煉)與連鑄作業周期的比較,來確定是否對個體進行交叉、變異操作。以國內某中大型煉鋼廠主要生產模式下的實際生產計劃為仿真算例進行實驗,結果表明:本文提出的基于“爐?機對應”的改進遺傳算法的性能顯著優于基本遺傳算法及啟發式算法,針對煉鋼廠產量占比超過80%的主要生產模式4BOF?3CCM下的算例1,優化了生產過程等待時間,工序間最長等待時間由77 min減小到54 min;爐?機匹配程度也明顯提高,3號精煉爐去往3號連鑄機的鋼水比例由25%提升到67%,減少了個別爐次由于設備隨機指派造成的工序設備間對應關系不明確及由于生產路徑不合理造成等待時間過長的現象,為研究煉鋼廠復雜生產調度問題提供了一種高效的解決方案。Abstract: To avoid the frequent cross supply, excessive waiting time and difficult crane dispatching of molten steel among processes that resulted from the complex workshop layout of the steelmaking continuous casting process, a production scheduling model for the steelmaking-continuous casting process was established in this study with the objective of optimizing and minimizing the total waiting time of all furnaces in the plan. Moreover, an improved genetic algorithm was used to solve the model. In the operation process of the genetic algorithm, the “furnace-caster coordinating” strategy was introduced to improve the quality of the initial population. Furthermore, the crossover and mutation operations were determined based on the comparison of the operating cycles of steelmaking (refining) and continuous casting. The actual production plan under the main production mode of a large domestic steel plant was utilized as the simulation sample. Results show that the performance of the improved algorithm based on the “furnace-caster coordinating” strategy is significantly better than that of the basic genetic and heuristic algorithms. The output of Sample 1 of the main production model 4BOF?3CCM accounts for more than 80% in steel plants. After optimization, the waiting time of the production process is optimized, and the maximum waiting time between steelmaking and continuous casting processes is reduced from 77 to 54 min. The degree of matching of the refining furnace-continuous caster machine is significantly improved. Moreover, the proportion of molten steel poured from the No. 3 refining furnace on the No. 3 continuous caster machine is increased from 25% to 67%. The phenomenon of unclear matching among processes and facilities caused by random facility assignment for one or two furnaces is reduced. Furthermore, the phenomenon of excessive waiting time caused by unreasonable production path for one or two furnaces is reduced. An efficient solution for the study of complex production scheduling problems in steel plants is provided.
-
表 1 三種算法的測試結果
Table 1. Test results of three algorithms
Example Heat Production model T0/min T1/min p/% T2/min A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 1 76 4BOF?3CCM 2331 2281 4413 77 54 102 19 13 41 0 0 80 2 77 4BOF?4CCM 3844 3366 4167 97 76 102 35 29 33 0 0 94 3 90 4BOF?3CCM 1952 2036 5735 65 34 103 6 16 57 0 0 105 4 93 3BOF?3CCM 4302 3944 4932 94 76 100 30 29 39 0 0 59 5 65 4BOF?3CCM 1371 1272 2926 45 43 97 9 7 40 0 0 94 6 77 4BOF?3CCM 2456 2014 4658 78 60 92 27 12 54 0 0 78 7 84 4BOF?3CCM 2932 2811 5518 106 88 110 22 18 60 0 0 110 8 77 4BOF?4CCM 2878 3055 6052 84 78 114 28 30 67 0 0 108 9 80 4BOF?4CCM 2968 2280 2532 116 84 88 27 15 23 0 0 52 10 67 4BOF?3CCM 2286 2091 4046 75 72 102 25 18 52 0 0 44 259luxu-164 -
參考文獻
[1] Yin R Y. A discussion on “smart” steel plant——view from physical system side. Iron Steel, 2017, 52(6): 1殷瑞鈺. 關于智能化鋼廠的討論——從物理系統一側出發討論鋼廠智能化. 鋼鐵, 2017, 52(6):1 [2] Mattfeld D C, Bierwirth C. An efficient genetic algorithm for job shop scheduling with tardiness objectives. Eur J Oper Res, 2004, 155(3): 616 doi: 10.1016/S0377-2217(03)00016-X [3] Sakawa M, Mori T. An efficient genetic algorithm for job-shop scheduling problems with fuzzy processing time and fuzzy duedate. Comput Ind Eng, 1999, 36(2): 325 doi: 10.1016/S0360-8352(99)00135-7 [4] Fang Y D, Wang F, Wang H. Research of multi-objective optimization study for job shop scheduling problem based on grey ant colony algorithm. Adv Mater Res, 2011, 308-310: 1033 doi: 10.4028/www.scientific.net/AMR.308-310.1033 [5] Rajendran C, Ziegler H. Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. Eur J Oper Res, 2004, 155(2): 426 doi: 10.1016/S0377-2217(02)00908-6 [6] Peng K K, Pan Q K, Zhang B. An improved artificial bee colony algorithm for steelmaking-refining-continuous casting scheduling problem. Chin J Chem Eng, 2018, 26(8): 1727 doi: 10.1016/j.cjche.2018.06.008 [7] Pan Q K. An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling. Eur J Oper Res, 2016, 250(3): 702 doi: 10.1016/j.ejor.2015.10.007 [8] Zheng Z, Long J Y, Gao X Q, et al. Present situation and prospect of production control technology focusing on planning and scheduling in iron and steel enterprise. Comput Integr Manuf Syst, 2014, 20(11): 2660鄭忠, 龍建宇, 高小強, 等. 鋼鐵企業以計劃調度為核心的生產運行控制技術現狀與展望. 計算機集成制造系統, 2014, 20(11):2660 [9] Tang L X, Liu J Y, Rong A Y, et al. A review of planning and scheduling systems and methods for integrated steel production. Eur J Oper Res, 2001, 133(1): 1 doi: 10.1016/S0377-2217(00)00240-X [10] Murata T, Ishibuchi H, Tanaka H. Multi-objective genetic algorithm and its applications to flowshop scheduling. Comput Ind Eng, 1996, 30(4): 957 doi: 10.1016/0360-8352(96)00045-9 [11] Ishibuchi H, Murata T. A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans Syst Man Cybern Part C (Appl Rev) , 1998, 28(3): 392 doi: 10.1109/5326.704576 [12] Yuan S P, Li T K, Wang B L. Improved fast elitist non-dominated sorting genetic algorithm for multi-objective steelmaking-continuous casting production scheduling. Comput Integr Manuf Syst, 2019, 25(1): 115袁帥鵬, 李鐵克, 王柏琳. 多目標煉鋼?連鑄生產調度的改進帶精英策略的快速非支配排序遺傳算法. 計算機集成制造系統, 2019, 25(1):115 [13] Zhang Q M, Tang Q H, Zheng P, et al. An improved genetic algorithm and mathematical programming model for scheduling steel-making continuous casting production. Mod Manuf Eng, 2016, 25(11): 50張啟敏, 唐秋華, 鄭鵬, 等. 煉鋼連鑄生產調度問題建模及改進遺傳算法求解. 現代制造工程, 2016, 25(11):50 [14] Wang H B, Xu A J, Yao L, et al. Appling an improved genetic algorithm for solving the production scheduling problem of steelmaking and continuous casting. J Univ Sci Technol Beijing, 2010, 32(9): 1232汪紅兵, 徐安軍, 姚琳, 等. 應用改進遺傳算法求解煉鋼連鑄生產調度問題. 北京科技大學學報, 2010, 32(9):1232 [15] Jian W, Xue Y C, Qian J X. Optimum integrated cast plan for steelmaking-continuous casting production scheduling using improved genetic algorithm // 2nd IEEE International Conference on Industrial Informatics, INDIN'04(2004). Berlin, 2004: 283 [16] Xue Y C, Wang X, Li S Y. Improved genetic algorithm for integrated steelmaking optimum charge plan. IFAC Proceedings Volumes, 2005, 38(1): 61 [17] Zhu D F, Zheng Z, Gao X Q. Intelligent optimization-based production planning and simulation analysis for steelmaking and continuous casting process. J Iron Steel Res Int, 2010, 17(9): 19 doi: 10.1016/S1006-706X(10)60136-7 [18] Thamilselvan R, Balasubramanie P. Integrating genetic algorithm, tabu search and simulated annealing for job shop scheduling problem. Int J Comput Appl, 2012, 48(5): 42 [19] Li T K, Su Z X. Two-stage genetic algorithm for SM-CC production scheduling. Chin J Manage Sci, 2009, 17(5): 68 doi: 10.3321/j.issn:1003-207X.2009.05.010李鐵克, 蘇志雄. 煉鋼連鑄生產調度問題的兩階段遺傳算法. 中國管理科學, 2009, 17(5):68 doi: 10.3321/j.issn:1003-207X.2009.05.010 [20] Xu Z J, Zheng Z, Gao X Q. HGA combined with priority strategy for production planning of steelmaking-continuous casting. Control Decision, 2016, 31(8): 1394徐兆俊, 鄭忠, 高小強. 煉鋼連鑄生產調度的優先級策略混合遺傳算法. 控制與決策, 2016, 31(8):1394 [21] Liu Q, Tian N Y, Yin R Y. Operation principle and control strategy for steelmaking workshop system. Chin J Process Eng, 2003, 3(2): 171 doi: 10.3321/j.issn:1009-606X.2003.02.015劉青, 田乃媛, 殷瑞鈺. 煉鋼廠系統的運行原則與調控策略. 過程工程學報, 2003, 3(2):171 doi: 10.3321/j.issn:1009-606X.2003.02.015 [22] Wang C, Liu Q, Li Q Y, et al. Optimal charge plan model for steelmaking based on modified partheno-genetic algorithm. Control Theory Appl, 2013, 30(6): 734 -