<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于“爐?機對應”的煉鋼?連鑄生產調度問題遺傳優化模型

劉倩 楊建平 王柏琳 劉青 高山 李宏輝

劉倩, 楊建平, 王柏琳, 劉青, 高山, 李宏輝. 基于“爐?機對應”的煉鋼?連鑄生產調度問題遺傳優化模型[J]. 工程科學學報, 2020, 42(5): 645-653. doi: 10.13374/j.issn2095-9389.2019.08.02.004
引用本文: 劉倩, 楊建平, 王柏琳, 劉青, 高山, 李宏輝. 基于“爐?機對應”的煉鋼?連鑄生產調度問題遺傳優化模型[J]. 工程科學學報, 2020, 42(5): 645-653. doi: 10.13374/j.issn2095-9389.2019.08.02.004
LIU Qian, YANG Jian-ping, WANG Bai-lin, LIU Qing, GAO Shan, LI Hong-hui. Genetic optimization model of steelmaking?continuous casting production scheduling based on the “furnace?caster coordinating” strategy[J]. Chinese Journal of Engineering, 2020, 42(5): 645-653. doi: 10.13374/j.issn2095-9389.2019.08.02.004
Citation: LIU Qian, YANG Jian-ping, WANG Bai-lin, LIU Qing, GAO Shan, LI Hong-hui. Genetic optimization model of steelmaking?continuous casting production scheduling based on the “furnace?caster coordinating” strategy[J]. Chinese Journal of Engineering, 2020, 42(5): 645-653. doi: 10.13374/j.issn2095-9389.2019.08.02.004

基于“爐?機對應”的煉鋼?連鑄生產調度問題遺傳優化模型

doi: 10.13374/j.issn2095-9389.2019.08.02.004
基金項目: 教育部博士學科點專項科研基金資助項目(20090006110024);中央高校基本科研業務費專項基金資助項目(FRF-BR-17-029A)
詳細信息
    通訊作者:

    E-mail:qliu@ustb.edu.cn

  • 中圖分類號: TF087

Genetic optimization model of steelmaking?continuous casting production scheduling based on the “furnace?caster coordinating” strategy

More Information
  • 摘要: 針對煉鋼?連鑄過程因車間布局復雜造成工序間鋼水交叉供應頻繁、等待時間過長以及天車調度困難等問題,本文建立以計劃內所有爐次總等待時間最小為優化目標的煉鋼?連鑄過程生產調度模型,并采用改進的遺傳算法求解該模型。在遺傳操作過程中,引入“爐?機對應”調控策略以改善初始種群質量,并根據轉爐(精煉)與連鑄作業周期的比較,來確定是否對個體進行交叉、變異操作。以國內某中大型煉鋼廠主要生產模式下的實際生產計劃為仿真算例進行實驗,結果表明:本文提出的基于“爐?機對應”的改進遺傳算法的性能顯著優于基本遺傳算法及啟發式算法,針對煉鋼廠產量占比超過80%的主要生產模式4BOF?3CCM下的算例1,優化了生產過程等待時間,工序間最長等待時間由77 min減小到54 min;爐?機匹配程度也明顯提高,3號精煉爐去往3號連鑄機的鋼水比例由25%提升到67%,減少了個別爐次由于設備隨機指派造成的工序設備間對應關系不明確及由于生產路徑不合理造成等待時間過長的現象,為研究煉鋼廠復雜生產調度問題提供了一種高效的解決方案。

     

  • 圖  1  典型煉鋼?連鑄生產流程示意圖

    Figure  1.  Flowchart of typical steelmaking continuous casting production scheduling

    圖  2  爐次在冶煉、精煉工序的時間參數

    Figure  2.  Time parameters of the heat sequences of the smelting and refining process

    圖  3  爐次順序調整

    Figure  3.  Adjustment of the heat sequences

    圖  4  基于“爐?機對應”策略的遺傳算法求解流程

    Figure  4.  Solution procedure of the scheduling problems derived using the genetic algorithm based on the “furnace?caster coordinating” strategy

    圖  5  改進前(a)后(b)算例1的爐?機對應關系

    Figure  5.  “Furnace?caster coordinating” in Sample 1 before (a) and after (b) improvement

    圖  6  改進前(a)后(b)算例2的爐?機對應關系

    Figure  6.  “Furnace?caster coordinating” in Sample 2 before (a) and after (b) improvement

    表  1  三種算法的測試結果

    Table  1.   Test results of three algorithms

    ExampleHeatProduction modelT0/min T1/min p/% T2/min
    A1A2A3 A1A2A3 A1A2A3 A1A2A3
    1764BOF?3CCM233122814413 7754102 191341 0080
    2774BOF?4CCM384433664167 9776102 352933 0094
    3904BOF?3CCM195220365735 6534103 61657 00105
    4933BOF?3CCM430239444932 9476100 302939 0059
    5654BOF?3CCM137112722926 454397 9740 0094
    6774BOF?3CCM245620144658 786092 271254 0078
    7844BOF?3CCM293228115518 10688110 221860 00110
    8774BOF?4CCM287830556052 8478114 283067 00108
    9804BOF?4CCM296822802532 1168488 271523 0052
    10674BOF?3CCM228620914046 7572102 251852 0044
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Yin R Y. A discussion on “smart” steel plant——view from physical system side. Iron Steel, 2017, 52(6): 1

    殷瑞鈺. 關于智能化鋼廠的討論——從物理系統一側出發討論鋼廠智能化. 鋼鐵, 2017, 52(6):1
    [2] Mattfeld D C, Bierwirth C. An efficient genetic algorithm for job shop scheduling with tardiness objectives. Eur J Oper Res, 2004, 155(3): 616 doi: 10.1016/S0377-2217(03)00016-X
    [3] Sakawa M, Mori T. An efficient genetic algorithm for job-shop scheduling problems with fuzzy processing time and fuzzy duedate. Comput Ind Eng, 1999, 36(2): 325 doi: 10.1016/S0360-8352(99)00135-7
    [4] Fang Y D, Wang F, Wang H. Research of multi-objective optimization study for job shop scheduling problem based on grey ant colony algorithm. Adv Mater Res, 2011, 308-310: 1033 doi: 10.4028/www.scientific.net/AMR.308-310.1033
    [5] Rajendran C, Ziegler H. Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. Eur J Oper Res, 2004, 155(2): 426 doi: 10.1016/S0377-2217(02)00908-6
    [6] Peng K K, Pan Q K, Zhang B. An improved artificial bee colony algorithm for steelmaking-refining-continuous casting scheduling problem. Chin J Chem Eng, 2018, 26(8): 1727 doi: 10.1016/j.cjche.2018.06.008
    [7] Pan Q K. An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling. Eur J Oper Res, 2016, 250(3): 702 doi: 10.1016/j.ejor.2015.10.007
    [8] Zheng Z, Long J Y, Gao X Q, et al. Present situation and prospect of production control technology focusing on planning and scheduling in iron and steel enterprise. Comput Integr Manuf Syst, 2014, 20(11): 2660

    鄭忠, 龍建宇, 高小強, 等. 鋼鐵企業以計劃調度為核心的生產運行控制技術現狀與展望. 計算機集成制造系統, 2014, 20(11):2660
    [9] Tang L X, Liu J Y, Rong A Y, et al. A review of planning and scheduling systems and methods for integrated steel production. Eur J Oper Res, 2001, 133(1): 1 doi: 10.1016/S0377-2217(00)00240-X
    [10] Murata T, Ishibuchi H, Tanaka H. Multi-objective genetic algorithm and its applications to flowshop scheduling. Comput Ind Eng, 1996, 30(4): 957 doi: 10.1016/0360-8352(96)00045-9
    [11] Ishibuchi H, Murata T. A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans Syst Man Cybern Part C (Appl Rev), 1998, 28(3): 392 doi: 10.1109/5326.704576
    [12] Yuan S P, Li T K, Wang B L. Improved fast elitist non-dominated sorting genetic algorithm for multi-objective steelmaking-continuous casting production scheduling. Comput Integr Manuf Syst, 2019, 25(1): 115

    袁帥鵬, 李鐵克, 王柏琳. 多目標煉鋼?連鑄生產調度的改進帶精英策略的快速非支配排序遺傳算法. 計算機集成制造系統, 2019, 25(1):115
    [13] Zhang Q M, Tang Q H, Zheng P, et al. An improved genetic algorithm and mathematical programming model for scheduling steel-making continuous casting production. Mod Manuf Eng, 2016, 25(11): 50

    張啟敏, 唐秋華, 鄭鵬, 等. 煉鋼連鑄生產調度問題建模及改進遺傳算法求解. 現代制造工程, 2016, 25(11):50
    [14] Wang H B, Xu A J, Yao L, et al. Appling an improved genetic algorithm for solving the production scheduling problem of steelmaking and continuous casting. J Univ Sci Technol Beijing, 2010, 32(9): 1232

    汪紅兵, 徐安軍, 姚琳, 等. 應用改進遺傳算法求解煉鋼連鑄生產調度問題. 北京科技大學學報, 2010, 32(9):1232
    [15] Jian W, Xue Y C, Qian J X. Optimum integrated cast plan for steelmaking-continuous casting production scheduling using improved genetic algorithm // 2nd IEEE International Conference on Industrial Informatics, INDIN'04(2004). Berlin, 2004: 283
    [16] Xue Y C, Wang X, Li S Y. Improved genetic algorithm for integrated steelmaking optimum charge plan. IFAC Proceedings Volumes, 2005, 38(1): 61
    [17] Zhu D F, Zheng Z, Gao X Q. Intelligent optimization-based production planning and simulation analysis for steelmaking and continuous casting process. J Iron Steel Res Int, 2010, 17(9): 19 doi: 10.1016/S1006-706X(10)60136-7
    [18] Thamilselvan R, Balasubramanie P. Integrating genetic algorithm, tabu search and simulated annealing for job shop scheduling problem. Int J Comput Appl, 2012, 48(5): 42
    [19] Li T K, Su Z X. Two-stage genetic algorithm for SM-CC production scheduling. Chin J Manage Sci, 2009, 17(5): 68 doi: 10.3321/j.issn:1003-207X.2009.05.010

    李鐵克, 蘇志雄. 煉鋼連鑄生產調度問題的兩階段遺傳算法. 中國管理科學, 2009, 17(5):68 doi: 10.3321/j.issn:1003-207X.2009.05.010
    [20] Xu Z J, Zheng Z, Gao X Q. HGA combined with priority strategy for production planning of steelmaking-continuous casting. Control Decision, 2016, 31(8): 1394

    徐兆俊, 鄭忠, 高小強. 煉鋼連鑄生產調度的優先級策略混合遺傳算法. 控制與決策, 2016, 31(8):1394
    [21] Liu Q, Tian N Y, Yin R Y. Operation principle and control strategy for steelmaking workshop system. Chin J Process Eng, 2003, 3(2): 171 doi: 10.3321/j.issn:1009-606X.2003.02.015

    劉青, 田乃媛, 殷瑞鈺. 煉鋼廠系統的運行原則與調控策略. 過程工程學報, 2003, 3(2):171 doi: 10.3321/j.issn:1009-606X.2003.02.015
    [22] Wang C, Liu Q, Li Q Y, et al. Optimal charge plan model for steelmaking based on modified partheno-genetic algorithm. Control Theory Appl, 2013, 30(6): 734
  • 加載中
圖(6) / 表(1)
計量
  • 文章訪問數:  2648
  • HTML全文瀏覽量:  1167
  • PDF下載量:  72
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-08-02
  • 刊出日期:  2020-05-01

目錄

    /

    返回文章
    返回