Simulation of oxygen enrichment characteristics and effect in hypoxia air-conditioning room
-
摘要: 利用實驗及CFD模擬軟件分別研究非空調工況下以及空調工況的送氧口個數、送氧口管徑、送氧流量及送氧方式、不同的氣流組織形式(同側上送下回、異側上送下回)等發生變化對密閉建筑缺氧房間的富氧特性及富氧效果的影響. 結果表明: 非空調工況下, 送氧口個數、送氧口管徑、送氧流量及送氧方式不同, 所形成的富氧區域差別較大, 宜采用管徑為6 mm的相背45°的雙送氧口進行送氧, 所形成的富氧面積為最大; 空調工況下, 送氧口個數、送氧口管徑、送氧流量及氣流組織形式不同, 所形成的富氧區域形狀大體相似, 均為"橢圓"形狀, 宜采用送氧口管徑為6 mm的單送氧口且異側上送下回的氣流組織形式; 空調工況下, 送氧流量相同時, 送風風速為0.85 m·s-1所形成的富氧面積比送風風速為1 m·s-1所形成的富氧面積大約20%;當送風風速均為0.85 m·s-1, 送氧流量為1.5 m3·h-1所形成的富氧面積約為0.96 m2, 該富氧面積與單人次活動范圍面積相當, 適宜作為空調工況下缺氧房間單人次的富氧基礎供氧量. 模擬結果可為缺氧空調房間供氧裝置的選擇、布置、降低新風量、降低空調能耗等方面提供參考.Abstract: Experiments and computational fluid dynamics (CFD) simulation were used to analyze the effects of the number and the diameter of oxygen supply ports, the flow rate and the mode of oxygen supply, and different modes of air flow (up-inlet and down-outlet on the same side, or on the different side) on the indoor oxygen enrichment characteristics and the effect of anoxic conditions in a closed buildings with or without air conditioning. Without air conditioning, the number and the diameter of oxygen supply ports, the flow rate and mode of oxygen supply, and formed oxygen-enriched regions are quite different. Using a double-45°-opposite oxygen supply ports with a diameter of 6 mm is advisable. Under the air conditioning condition, the number and the diameter of oxygen supply ports, the flow rate of oxygen supply, and the modes of air flow are different too. The formed oxygen-enriched area are all generally elliptical. It is advisable to use a single oxygen supply port with a diameter of 6 mm and an air flow mode of up-inlet and down-outlet on the different side. When the flow rate of the oxygen supply is the same, the oxygen-enriched area are formed by the wind speed of 0.85 m·s-1 is approximately 20% larger than that formed by the 1 m·s-1 wind speed. When the air supply wind speed is 0.85 m·s-1 and the oxygen supply flow rate is 1.5 m3·h-1, the oxygen-enriched area is approximately 0.96 m2, which is consistent with the area of the single-person activity. It is suitable as the basic oxygen-enriched supply for the single-person under air conditioning conditions where are lack of oxygen.
-
Key words:
- air-conditioning room /
- anoxic conditions /
- oxygen-enrichment /
- air distribution
-
圖 6 非空調工況下雙送氧口送氧流量相同、送氧方式不同時的軸向最大速度分布. (a) 送氧口管徑6 mm; (b) 送氧口管徑10 mm
Figure 6. The axial maximum velocity distribution of the double oxygen-feeding ports when the oxygen supply flow rate is same, but the oxygen supply mode is different in non-air-conditioning conditions: (a) outlet diameter 6 mm; (b) outlet diameter 10 mm
圖 7 非空調工況下送氧口個數及送氧方式不同時的富氧范圍.(a) 單送氧口; (b) 雙送氧口(送氧口管徑6 mm); (c) 雙送氧口(送氧口管徑10 mm)
Figure 7. Oxygen-enriched region with different oxygen-feeding ports and oxygen-feeding mode in non-air-conditioning conditions: (a) single oxygen-feeding port; (b) double oxygen-feeding ports (outlet diameter 6 mm); (c) double oxygen-feeding ports (outlet diameter 10 mm)
圖 8 空調工況下(Vin=0.85 m·s-1)單送氧口送氧流量及送風方式不同時的軸向最大速度分布. (a) 送氧口管徑6 mm; (b) 送氧口管徑10 mm
Figure 8. Axial velocity distribution of the single oxygen-feeding port with different oxygen flow rates and different air supply methods in air-conditioning conditions (Vin=0.85 m·s-1): (a) outlet diameter 6 mm; (b) outlet diameter 10 mm
圖 9 空調工況下(Vin=0.85 m·s-1)雙送氧口豎直送氧且送氧流量及送風方式不同時的軸向最大速度分布. (a) 送氧口管徑6 mm; (b) 送氧口管徑10 mm
Figure 9. Axial velocity distribution of the double vertical forward-facing oxygen-feeding ports in air-conditioning conditions(Vin=0.85 m·s-1)with different oxygen flow rates and different air supply methods: (a) outlet diameter 6 mm; (b) outlet diameter 10 mm
圖 12 空調工況下送風風速不同時形成的富氧范圍. (a) 送氧流量1 m3·h-1; (b) 送氧流量1.5 m3·h-1; (c) 送氧流量2 m3·h-1
Figure 12. Oxygen-enriched region with different air velocity in air-conditioning conditions: (a)oxygen delivery flow rate of 1 m3·h-1; (b) oxygen delivery flow rate of 1.5 m3·h-1; (c) oxygen delivery flow rate of 2 m3·h-1
表 1 人工氣候室的主要結構參數
Table 1. Structure parameters of the artificial climate chamber
結構參數 數值/m 結構參數 數值/ 送風口直徑 0.15 回風口直徑 0.15 送風口中心位置距地面 2.65 回風口中心位置距地面 0.25 兩送風口中心間距 0.49 兩回風口中心間距 0.49 送氧口直徑(小管徑) 0.006 送氧口直徑(大管徑) 0.01 桌面(長、寬、高) 0.5、0.72、0.05 椅背(長、寬、高) 0.15、0.42、1.1 桌腿(長、寬、高) 0.03、0.03、0.5 椅面(長、寬、高) 0.57、0.42、0.3 表 2 非空調工況下的初始條件及內容
Table 2. Numerical simulation conditions and contents in non-air-conditioning conditions
序號 送氧口個數及方式 送氧體積分數/
%送氧口管徑/
mm總送氧流量/
(m3·h-1)單個送氧口流量/
(m3·h-1)送氧流速/
(m·s-1)1 1(豎直) 99 10 2 2 7.08 2 1(豎直) 99 10 1.5 1.5 5.31 3 1(豎直) 99 10 1 1 3.54 4 1(豎直) 99 10 0.5 0.5 1.77 5 1(豎直) 99 10 0.2 0.2 0.71 6 1(豎直) 99 6 2 2 19.66 7 1(豎直) 99 6 1.5 1.5 14.74 8 1(豎直) 99 6 1 1 9.83 9 1(豎直) 99 6 0.5 0.5 4.91 10 1(豎直) 99 6 0.2 0.2 1.96 11 2(豎直、相對45°、相背45°) 99 10 2 1 3.54 12 2(豎直、相對45°、相背45°) 99 10 1.5 0.75 2.66 13 2(豎直、相對45°、相背45°) 99 10 1 0.5 1.77 14 2(豎直、相對45°、相背45°) 99 10 0.5 0.25 0.89 15 2(豎直、相對45°、相背45°) 99 10 0.2 0.1 0.36 16 2(豎直、相對45°、相背45°) 99 6 2 1 9.83 17 2(豎直、相對45°、相背45°) 99 6 1.5 0.75 7.37 18 2(豎直、相對45°、相背45°) 99 6 1 0.5 4.91 19 2(豎直、相對45°、相背45°) 99 6 0.5 0.25 2.46 20 2(豎直、相對45°、相背45°) 99 6 0.2 0.1 0.98 表 3 空調工況下的空調送、回風的模擬條件
Table 3. Numerical simulation conditions and contents in air-conditioning conditions
空調送風方式 送風速度,
Vin/(m·s-1)空調送風方式 送風速度,
Vin/(m·s-1)同側上送下回 0.85 異側上送下回 0.85 同側上送下回 1 異側上送下回 1 同側上送下回 1.4 異側上送下回 1.4 表 4 非空調工況下的送氧方式及送氧口流量不同時形成的富氧面積
Table 4. Oxygen-enriched area with different oxygen-feeding modes and oxygen flow rates in non-air-conditioning conditions
序號 總送氧流量/(m3·h-1) 單個送氧口流量/(m3·h-1) 送氧口管徑/mm 送氧口個數及送氧方式 富氧面積/m2 1 1 1 10 1(豎直) 0.66 2 1 1 6 1(豎直) 1.19 3 1 0.5 10 2(豎直) 0.39 4 1 0.5 6 2(豎直) 1.16 5 1 0.5 10 2(相對45°) 0.22 6 1 0.5 6 2(相對45°) 0.79 7 1 0.5 10 2(相背45°) 0.64 8 1 0.5 6 2(相背45°) 1.57 表 5 空調工況下的送氧方式及送氧口流量不同時形成的富氧面積
Table 5. Oxygen-enriched area with different oxygen-feeding modes and oxygen flow rates in air-conditioning conditions
序號 總送氧流量/(m3·h-1) 單個送氧口流量/(m3·h-1) 送氧口管徑/mm 送氧口個數及送氧方式 空調送風方式 富氧面積/m2 1 1 1 10 1(豎直) 同側上送下回 0.66 2 1 1 10 1(豎直) 異側上送下回 1.19 3 1 1 6 1(豎直) 同側上送下回 0.39 4 1 1 6 1(豎直) 異側上送下回 1.16 5 1 0.5 10 2(豎直) 同側上送下回 0.22 6 1 0.5 10 2(豎直) 異側上送下回 0.79 7 1 0.5 6 2(豎直) 同側上送下回 0.64 8 1 0.5 6 2(豎直) 異側上送下回 1.57 表 6 空調工況下的空調送風風速不同時形成的富氧面積
Table 6. Oxygen-enriched area with different air velocities in air-conditioning conditions
序號 總送氧流量/(m3·h-1) 送氧口管徑/mm 送氧口個數及送氧方式 空調送風方式 送風風速/(m·s-1) 富氧面積/m2 1 1 6 1(豎直) 異側上送下回 0.85 0.54 2 1 6 1(豎直) 異側上送下回 1 0.42 3 1 6 1(豎直) 異側上送下回 1.4 0.22 4 1.5 6 1(豎直) 異側上送下回 0.85 0.96 5 1.5 6 1(豎直) 異側上送下回 1 0.83 6 1.5 6 1(豎直) 異側上送下回 1.4 0.47 7 2 6 1(豎直) 異側上送下回 0.85 1.73 8 2 6 1(豎直) 異側上送下回 1 1.47 9 2 6 1(豎直) 異側上送下回 1.4 0.84 259luxu-164 -
參考文獻
[1] Wei Y G, Yang H, Liu J J. Probe into specific characteristics of transportation organization and safety system of Qinghai-Tibet Railway. Chin Saf Sci J, 2003, 13(3): 22 doi: 10.3969/j.issn.1003-3033.2003.03.007魏玉光, 楊浩, 劉建軍. 青藏鐵路運輸組織的特殊性及安全保障體系初探. 中國安全科學學報, 2003, 13(3): 22 doi: 10.3969/j.issn.1003-3033.2003.03.007 [2] Wei J, Xu Z Y, Li C, et al. Discussion on severely cold and oxygen deficiency problems and their countermeasures in Qing-Zang Railway construction. Chin Saf Sci J, 2006, 16(4): 72 doi: 10.3969/j.issn.1003-3033.2006.04.014魏靜, 許兆義, 李成, 等. 青藏鐵路建設中高寒缺氧及保障問題的研討. 中國安全科學學報, 2006, 16(4): 72 doi: 10.3969/j.issn.1003-3033.2006.04.014 [3] Tang Z X, Yang P, Lü W S, et al. Study on the underground gas concertation standard for highland mines. Met Mine, 2009(5): 152 doi: 10.3321/j.issn:1001-1250.2009.05.041唐志新, 楊鵬, 呂文生, 等. 高原地下礦井下氣體濃度標準探討. 金屬礦山, 2009(5): 152 doi: 10.3321/j.issn:1001-1250.2009.05.041 [4] Liu Y S, Cui H S, Liu W H, et al. Study on technology of oxygen supply in tunnel development in high attitude area. Min Metall, 2005, 14(1): 5 https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ200501002.htm劉應書, 崔紅社, 劉文海, 等. 高海拔地區隧道施工供氧技術研究. 礦冶, 2005, 14(1): 5 https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ200501002.htm [5] Liu F, He C J, Jin Y M. Study on oxygen supply system of refuge chamber. Saf Coal Mines, 2012, 43(10): 49 https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201210014.htm劉峰, 何春杰, 金玉明. 避難硐室供氧系統的研究. 煤礦安全, 2012, 43(10): 49 https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201210014.htm [6] Zhu Y Q, Jia X Y, Zhang X Y. Circumstances controlling technology of high altitude tunnel during construction in permafrost regions. Rock Soil Mech, 2006, 27(12): 2177 doi: 10.3969/j.issn.1000-7598.2006.12.017朱永全, 賈曉云, 張雪雁. 高海拔、高寒區、凍土隧道洞內施工環境控制技術. 巖土力學, 2006, 27(12): 2177 doi: 10.3969/j.issn.1000-7598.2006.12.017 [7] Zhang X J, Lian Z W, Lan L. Improving measures of thermal comfort and air quality in submarine cabin. Chin J Ship Res, 2012, 7(4): 11 doi: 10.3969/j.issn.1673-3185.2012.04.003張曉靜, 連之偉, 蘭麗. 改善潛艇艙室熱舒適和空氣品質的技術探討. 中國艦船研究, 2012, 7(4): 11 doi: 10.3969/j.issn.1673-3185.2012.04.003 [8] Wang S, Jin L Z, Ou S N, et al. Prediction model of human comfort index in underground emergency refuge facilities. Chin J Eng, 2015, 37(5): 551 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201505002.htm汪澍, 金龍哲, 歐盛南, 等. 井下緊急避險設施內人體舒適度預測模型. 工程科學學報, 2015, 37(5): 551 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201505002.htm [9] Liu Y S, Zhu X Q, Cao Y Z, et al. Flow characteristics and oxygen-enriched effect of oxygen diffusion. Chin J Eng, 2015, 37(10): 1370 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201510018.htm劉應書, 祝顯強, 曹永正, 等. 彌散供氧流動特性及其富氧效果. 工程科學學報, 2015, 37(10): 1370 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201510018.htm [10] Gao C J, Ma B S, Yang J Y, et al. Oxygen Therapy and Oxygen Health Care. Beijing: Masses Press, 1996高春錦, 馬必生, 楊捷云, 等. 氧療與氧保健. 北京: 群眾出版社, 1996 [11] Liu Y S, Zhang H, Liu W H, et al. Anoxic Environment Oxygen Making and Supply Technology. Beijing: Metallurgical Industry Press, 2010劉應書, 張輝, 劉文海, 等. 缺氧環境制氧供氧技術. 北京: 冶金工業出版社, 2010 [12] Mohammad J J, Ali A K, Seyed A M N, et al. Association of sick building syndrome with indoor air parameters. Tanaffos, 2015, 14(1): 55 http://europepmc.org/articles/PMC4515331 [13] Liu Y S, Du X W, Zhao H, et al. Feasibility of oxygen enriched air conditioning. J HV & AC, 2006, 36(4): 38 doi: 10.3969/j.issn.1002-8501.2006.04.009劉應書, 杜雄偉, 趙華, 等. 富氧空調的可行性探討. 暖通空調, 2006, 36(4): 38 doi: 10.3969/j.issn.1002-8501.2006.04.009 [14] Liu Z Y, Zhou Y, Huang P, et al. Scaled field test for CO2 leakage and dispersion from pipelines. CIESC J, 2012, 63(5): 1651 doi: 10.3969/j.issn.0438-1157.2012.05.046劉振翼, 周軼, 黃平, 等. CO2管線泄漏擴散小尺度實驗研究. 化工學報, 2012, 63(5): 1651 doi: 10.3969/j.issn.0438-1157.2012.05.046 [15] Jin W F, Zhang N N, Zhang Y, et al. Experimental study on the leakage and diffusion performance of flammable refrigerant R32 in split-type air-conditioner. J Refrigeration, 2015, 36(6): 10 doi: 10.3969/j.issn.0253-4339.2015.06.010金梧鳳, 張寧寧, 張燕, 等. 可燃制冷劑R32室內空調器泄漏擴散特性的實驗研究. 制冷學報, 2015, 36(6): 10 doi: 10.3969/j.issn.0253-4339.2015.06.010 [16] Fu J M, Zhao Z Y, Chen G M, et al. Influences of liquid pipeline flow and pressure on small-hole leakage rate. Acta Petrol Sin, 2016, 37(2): 257 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602013.htm付建民, 趙振洋, 陳國明, 等. 液相管道流量與壓力對小孔泄漏速率的影響. 石油學報, 2016, 37(2): 257 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602013.htm [17] Liu P Q. Free Turbulent Jet Theory. Beijing: Beihang University Press, 2007劉沛清. 自由紊動射流理論. 北京: 北京航空航天大學出版社, 2007 [18] Xie X C. Turbulent Jet Theory and Computation. Beijing: Science Press, 1975謝象春. 湍流射流理論與計算. 北京: 科學出版社, 1975 [19] Qu Y P, Chen S Y, Wang X P, et al. Discussion on the numerical simulation of ax-symmetric jet with different turbulent model. J Eng Thermophys, 2008, 29(6): 957 doi: 10.3321/j.issn:0253-231X.2008.06.014曲延鵬, 陳頌英, 王小鵬, 等. 不同湍流模型對圓射流數值模擬的討論. 工程熱物理學報, 2008, 29(6): 957 doi: 10.3321/j.issn:0253-231X.2008.06.014 [20] Christopher D M, Bi J L, Li X F. Integral model and CFD simulations for hydrogen leaks. CIESC J, 2013, 64(9): 3088 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201309001.htm柯道友, 畢景良, 李雪芳. 氫氣泄漏過程的理論模型計算及CFD模擬. 化工學報, 2013, 64(9): 3088 https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201309001.htm [21] Wang J S, Wang Z C, Li M J. Heat transfer characteristics of square wave impinging jets with different duty cycles. CIESC J, 2013, 64(7): 2428 doi: 10.3969/j.issn.0438-1157.2013.07.017汪健生, 王振川, 李美軍. 不同工作因數下方波沖擊射流的換熱特性. 化工學報, 2013, 64(7): 2428 doi: 10.3969/j.issn.0438-1157.2013.07.017 [22] Tao W Q. Computational Fluid Dynamics and Heat Transfer. Beijing: China Construction Industry Publishing House, 1991陶文銓. 計算流體力學與傳熱學. 北京: 中國建筑工業出版社, 1991 [23] Tao W Q. Numerical Heat Transfer. 2nd Ed. Xi'an: Xi'an Jiao tong University Press, 2001陶文銓. 數值傳熱學. 2版. 西安: 西安交通大學出版社, 2001 [24] Zhang C Z, Liu Y S, Wang H Y, et al. Oxygen enrichment characteristics of an enclosed architectural space under anoxic conditions. Chin J Eng, 2018, 40(11): 1380 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201811012.htm張傳釗, 劉應書, 王浩宇, 等. 密閉建筑空間缺氧環境下富氧特性實驗研究. 工程科學學報, 2018, 40(11): 1380 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201811012.htm [25] Yong L, Xia S L, Zhu J H. Study on flow characteristics of gas-mist two phase confined jet. J Sichuan Univ Eng Sci Ed, 2001, 33(4): 54 https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200104013.htm雍煉, 夏素蘭, 朱家驊. 氣霧兩相受限射流特性的研究. 四川大學學報: 工程科學版, 2001, 33(4): 54 https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200104013.htm [26] Zhao N, Yu Y G, Liu D Y, et al. Numerical simulation of nozzle flow field characteristic of orifice flow generator. J Ball, 2010, 22(2): 81 https://www.cnki.com.cn/Article/CJFDTOTAL-DDXB201002020.htm趙娜, 余永剛, 劉東堯, 等. 小孔流量發生器噴口流場特性的數值模擬. 彈道學報, 2010, 22(2): 81 https://www.cnki.com.cn/Article/CJFDTOTAL-DDXB201002020.htm -