<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于IPSO-RELM轉爐冶煉終點錳含量預測模型

張壯 曹玲玲 林文輝 孫建坤 馮小明 劉青

張壯, 曹玲玲, 林文輝, 孫建坤, 馮小明, 劉青. 基于IPSO-RELM轉爐冶煉終點錳含量預測模型[J]. 工程科學學報, 2019, 41(8): 1052-1060. doi: 10.13374/j.issn2095-9389.2019.08.011
引用本文: 張壯, 曹玲玲, 林文輝, 孫建坤, 馮小明, 劉青. 基于IPSO-RELM轉爐冶煉終點錳含量預測模型[J]. 工程科學學報, 2019, 41(8): 1052-1060. doi: 10.13374/j.issn2095-9389.2019.08.011
ZHANG Zhuang, CAO Ling-ling, LIN Wen-hui, SUN Jian-kun, FENG Xiao-ming, LIU Qing. Improved prediction model for BOF end-point manganese content based on IPSO-RELM method[J]. Chinese Journal of Engineering, 2019, 41(8): 1052-1060. doi: 10.13374/j.issn2095-9389.2019.08.011
Citation: ZHANG Zhuang, CAO Ling-ling, LIN Wen-hui, SUN Jian-kun, FENG Xiao-ming, LIU Qing. Improved prediction model for BOF end-point manganese content based on IPSO-RELM method[J]. Chinese Journal of Engineering, 2019, 41(8): 1052-1060. doi: 10.13374/j.issn2095-9389.2019.08.011

基于IPSO-RELM轉爐冶煉終點錳含量預測模型

doi: 10.13374/j.issn2095-9389.2019.08.011
基金項目: 

江西省重點研發計劃資助項目 20171ACE50020

詳細信息
    通訊作者:

    劉青, E-mail: qliu@ustb.edu.cn

  • 中圖分類號: TP723

Improved prediction model for BOF end-point manganese content based on IPSO-RELM method

More Information
  • 摘要: 分析了影響轉爐冶煉終點鋼水中錳含量的因素, 針對基于BP神經網絡算法的轉爐冶煉終點錳含量預測模型存在的收斂速度慢, 預測精度低等問題, 提出了一種基于極限學習機(ELM) 算法建模的新思路, 并引入正則化以及改進粒子群優化算法(IPSO), 建立了基于改進粒子群算法優化的正則化極限學習機(IPSO-RELM) 的轉爐終點錳含量預測模型; 應用國內某煉鋼廠轉爐實際生產數據對模型進行訓練和驗證, 并與基于BP、ELM和RELM算法的三類模型進行比較.結果表明, 采用IPSO-RELM方法構建的模型, 錳含量預測誤差在±0. 025%范圍內的命中率達到94%, 均方誤差為2. 18×10-8, 擬合優度R2為0. 72, 上述三項指標均顯著優于其他三類模型, 此外, 該模型還具有良好的泛化能力, 對于轉爐實際冶煉過程具有一定的指導意義.

     

  • 圖  1  典型的單隱層前饋神經網絡模型

    Figure  1.  Typical single hidden layer feedforward neural network model

    圖  2  RELM模型拓撲結構圖

    Figure  2.  Structural diagram of RELM model

    圖  3  錳含量預測值與實測值的比較. (a) BP; (b) ELM; (c) RELM; (d) IPSO--RELM

    Figure  3.  Comparison of predicted and observed end-point manganese contents: (a) BP; (b) ELM; (c) RELM; (d) IPSO--RELM

    圖  4  錳含量預測誤差的分布. (a) BP; (b) ELM; (c) RELM; (d) IPSO--RELM

    Figure  4.  Distribution of prediction errors of end-point manganese content: (a) BP; (b) ELM; (c) RELM; (d) IPSO-RELM

    圖  5  四種模型錳含量預測誤差的比較

    Figure  5.  Comparison of prediction errors of four models

    表  1  轉爐終點錳含量影響因素的皮爾遜相關系數

    Table  1.   Pearson correlation coefficients of process parameters in the prediction of end-point manganese content for BOF

    變量 Pearson
    相關系數
    變量 Pearson
    相關系數
    化渣劑加入量 -0.545** 鐵水S質量分數 -0.231**
    廢鋼裝入量 0.376** 鐵水溫度 0.231**
    鐵水Mn質量分數 0.371** 鐵水P質量分數 0.217**
    石灰加入量 0.288** 氧耗量 0.201**
    輕燒白云石加入量 0.256** 鐵水加入量 0.193**
    注:** 表示變量與終點錳含量在0.01水平上顯著相關;*表示變量與終點錳含量在0.05水平上顯著相關.
    下載: 導出CSV

    表  2  IPSO-RELM模型的基本參數

    Table  2.   Fundamental parameters of IPSO-RELM model

    參數名稱 設置值 參數名稱 設置值
    輸入層節點 10 輸出層節點 1
    隱含層數 1 種群規模,P 20
    隱含層節點數 20 迭代次數,N 50
    學習因子,c1 2.8 最大權重系數,ωmax 1.2
    學習因子,c2 1.2 最小權重系數,ωmin 0.4
    下載: 導出CSV

    表  3  4種算法性能比較

    Table  3.   Comparison of performances of four kinds of algorithms

    模型 均方誤差,MSE/10-8 R2 誤差±0.025%命中率
    BP 3.49 0.49 0.78
    ELM 2.71 0.65 0.84
    RELM 2.64 0.66 0.88
    IPSO--RELM 2.18 0.72 0.94
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Takawa T, Katayama K, Hoteiya M, et al. Mathematical model of end point control for the top and bottom blowing process in BOF. Trans ISIJ, 1987, 27(12): 951 doi: 10.2355/isijinternational1966.27.951
    [2] He F, He D F, Xu A J, et al. Hybridmodel of molten steel temperature prediction based on ladle heat status and artificial neural network. J Iron Steel Res Int, 2014, 21(2): 181 doi: 10.1016/S1006-706X(14)60028-5
    [3] Wang H B, Cai J, Feng K. Predicting theendpoint phosphorus content of molten steel in BOF by two-stage hybrid method. J Iron Steel Res Int, 2014, 21(Suppl 1): 65 http://www.sciencedirect.com/science/article/pii/S1006706X14601230
    [4] Cox I J, Lewis R W, Ransing R S, et al. Application of neural computing in basic oxygen steelmaking. J Mater Process Technol, 2002, 120(1-3): 310 doi: 10.1016/S0924-0136(01)01136-0
    [5] Zhang G Y, Wan X F, Lin D, et al. Carbon content and temperature variation of bath based on exhaust gas analysis. J Iron Steel Res, 2006, 18(11): 56 doi: 10.3321/j.issn:1001-0963.2006.11.014

    張貴玉, 萬雪峰, 林東, 等. 基于爐氣分析的熔池碳含量及溫度變化研究. 鋼鐵研究學報, 2006, 18(11): 56 doi: 10.3321/j.issn:1001-0963.2006.11.014
    [6] Takawa T, Sato M, Okada T, et al. Development of automatic blowing technique in BOF based on a mathematical model. Tetsu-to-Hagane, 1988, 74(4): 664

    高輪武志, 佐藤光信, 岡田剛, 等. 數式モデルによる転爐自動吹錬技術の開発. 鉄と鋼, 1988, 74(4): 664
    [7] Yang L H, Liu L, He P. [Mn]ep prediction model for melt in oxygen converter. Steelmaking, 2003, 19(1): 10 doi: 10.3969/j.issn.1002-1043.2003.01.002

    楊立紅, 劉瀏, 何平. 轉爐冶煉終點錳成分的預報模型. 煉鋼, 2003, 19(1): 10 doi: 10.3969/j.issn.1002-1043.2003.01.002
    [8] Liu K, Liu L, He P. Endpoint phosphorus and manganese content control model based on sublance technique and optimization of dephosphorization process. Iron Steel, 2008, 43(7): 32 doi: 10.3321/j.issn:0449-749X.2008.07.007

    劉錕, 劉瀏, 何平. 基于副槍的轉爐終點磷錳控制模型與脫磷優化. 鋼鐵, 2008, 43(7): 32 doi: 10.3321/j.issn:0449-749X.2008.07.007
    [9] Wang Z, Chang J, Ju Q P, et al. Predictionmodel of end-point manganese content for BOF steelmaking process. ISIJ Int, 2012, 52(9): 1585 doi: 10.2355/isijinternational.52.1585
    [10] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70(1-3): 489 doi: 10.1016/j.neucom.2005.12.126
    [11] Zhao Q Q, Hou B L. Parameter identification of a shell transfer arm using FDA and optimized ELM. Chin J Eng, 2017, 39(4): 611 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704017.htm

    趙搶搶, 侯保林. 函數型數據分析與優化極限學習機結合的彈藥傳輸機械臂參數辨識. 工程科學學報, 2017, 39(4): 611 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201704017.htm
    [12] Deng W Y, Zheng Q H, Chen L. Regularizedextreme learning machine//IEEE Symposium on Computational Intelligence & Data Mining. Nashville, 2009: 389
    [13] Xiong W T, Yu B J, Sun L. Improved particle swarm optimization of rolling schedule on 420 mm 5-stand tandem cold strip mill. J Iron Steel Res, 2014, 26(11): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201411006.htm

    熊文濤, 禹寶軍, 孫林. 改進粒子群算法對1420mm五機架冷連軋機軋制規程的優化. 鋼鐵研究學報, 2014, 26(11): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201411006.htm
    [14] Kennedy J, Eberhart R. Particle swarm optimization//Proceedings of ICNN' 95-International Conference on Neural Networks. Perth, 1995: 1942
    [15] Li Q, Xu Y M, Zhang D Z, et al. Global path planning method for mobile robots based on the particle swarm algorithm. J Univ Sci Technol Beijing, 2010, 32(3): 397 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201003022.htm

    李擎, 徐銀梅, 張德政, 等. 基于粒子群算法的移動機器人全局路徑規劃策略. 北京科技大學學報, 2010, 32(3): 397 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201003022.htm
    [16] Tao H L. Study on Forecast of Railway Traffic Volume Based on Hybrid Intelligent Algorithm[Dissertation]. Lanzhou: Lanzhou Jiaotong University, 2012

    陶海龍. 基于混合智能算法的鐵路運量預測研究[學位論文]. 蘭州: 蘭州交通大學, 2012
    [17] Bueno-Crespo A, García-Laencina P J, Sancho-Gómez J L. Neural architecture design based on extreme learning machine. Neural Networks, 2013, 48: 19 doi: 10.1016/j.neunet.2013.06.010
    [18] Chen H Z, Yang J P, Lu X C, et al. Quality prediction of the continuous casting bloom based on the extreme learning machine. Chin J Eng, 2018, 40(7): 815 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201807007.htm

    陳恒志, 楊建平, 盧新春, 等. 基于極限學習機(ELM)的連鑄坯質量預測. 工程科學學報, 2018, 40(7): 815 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201807007.htm
    [19] Na W B, Su Z W, Ji Y F. Research ofsingle well production prediction based on improved extreme learning machine. Appl Mech Mater, 2013, 333-335: 1296 doi: 10.4028/www.scientific.net/AMM.333-335.1296
    [20] Martínez-Martínez J M, Escandell-Montero P, Soria-Olivas E, et al. Regularized extreme learning machine for regression problems. Neurocomputing, 2011, 74(17): 3716 doi: 10.1016/j.neucom.2011.06.013
    [21] Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Networks, 1989, 2(5): 359 doi: 10.1016/0893-6080(89)90020-8
    [22] Du B, Lin Y. Development andapplication of an universal automatic modeling tools. Comput Technol Autom, 2003, 22(2): 103 doi: 10.3969/j.issn.1003-6199.2003.02.030

    杜斌, 林云. 通用智能自動建模軟件開發與應用. 計算技術與自動化, 2003, 22(2): 103 doi: 10.3969/j.issn.1003-6199.2003.02.030
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數:  1143
  • HTML全文瀏覽量:  449
  • PDF下載量:  39
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-08-08
  • 刊出日期:  2019-08-01

目錄

    /

    返回文章
    返回