<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Fe-TiB2/Al2O3復合陰極的電解性能及元素遷移行為

梁玉冬 王力軍 柴登鵬 牛婷婷 包生重 王俊偉 劉英

梁玉冬, 王力軍, 柴登鵬, 牛婷婷, 包生重, 王俊偉, 劉英. Fe-TiB2/Al2O3復合陰極的電解性能及元素遷移行為[J]. 工程科學學報, 2019, 41(8): 1045-1051. doi: 10.13374/j.issn2095-9389.2019.08.010
引用本文: 梁玉冬, 王力軍, 柴登鵬, 牛婷婷, 包生重, 王俊偉, 劉英. Fe-TiB2/Al2O3復合陰極的電解性能及元素遷移行為[J]. 工程科學學報, 2019, 41(8): 1045-1051. doi: 10.13374/j.issn2095-9389.2019.08.010
LIANG Yu-dong, WANG Li-jun, CHAI Deng-peng, NIU Ting-ting, BAO Sheng-zhong, WANG Jun-wei, LIU Ying. Electrolytic properties and element migration behavior in a Fe-TiB2/Al2O3 composite cathode[J]. Chinese Journal of Engineering, 2019, 41(8): 1045-1051. doi: 10.13374/j.issn2095-9389.2019.08.010
Citation: LIANG Yu-dong, WANG Li-jun, CHAI Deng-peng, NIU Ting-ting, BAO Sheng-zhong, WANG Jun-wei, LIU Ying. Electrolytic properties and element migration behavior in a Fe-TiB2/Al2O3 composite cathode[J]. Chinese Journal of Engineering, 2019, 41(8): 1045-1051. doi: 10.13374/j.issn2095-9389.2019.08.010

Fe-TiB2/Al2O3復合陰極的電解性能及元素遷移行為

doi: 10.13374/j.issn2095-9389.2019.08.010
基金項目: 

中國鋁業股份有限公司重大科技計劃專項資助項目 ZB2013CBBCe1

詳細信息
    通訊作者:

    王力軍, E-mail: gold@grinm.com

  • 中圖分類號: TF821

Electrolytic properties and element migration behavior in a Fe-TiB2/Al2O3 composite cathode

More Information
  • 摘要: 以氧化鋁溶膠為黏結劑、金屬Fe為燒結助劑, 采用冷壓-燒結制備出鋁電解用Fe-TiB2/Al2O3復合陰極材料, 利用20A電解試驗研究其電解性能; 利用能譜儀(EDS) 對電解試驗前后的復合陰極材料進行了成分物相分析, 研究電解過程中各種元素遷移行為.研究結果表明: 金屬Fe作為燒結助劑在燒結過程中能有效的填充骨料之間的空隙, 使該復合陰極材料的燒結致密度顯著提高; 20 A電解試驗過程電壓穩定, 電流效率93. 2%, 原鋁中鋁元素質量分數為99. 47%, 雜質元素質量分數為0. 53%.在電解試驗后, 鋁液能有效潤濕陰極表面, 表明Fe-TiB2/Al2O3復合陰極材料具有較理想的可潤濕性; 從復合陰極電解后的能譜分析可知, 在電解過程中, 堿金屬主要是通過液態電解質滲透進入陰極材料中, 隨后又逐漸滲透進入黏結劑相中, 并在骨料之間氧化鋁溶膠和金屬燒結助劑均未能充分填充的空隙進行富集. K元素較Na元素對黏結相的滲透力更強; 與此同時, 陰極表面生成的Al通過復合材料的空隙進入陰極內部, 而Fe金屬會利用材料內部的空隙反向擴散至鋁液層中.在試驗中, 陰極表面的鋁液層的穩定存在是該陰極高效穩定運行的基礎.

     

  • 圖  1  電解實驗裝置示意圖

    Figure  1.  Schematic of the aluminum electrolysis test

    圖  2  兩種復合陰極燒結樣品微觀組織形貌圖. (a) Fe-TiB2; (b) Fe-TiB2/Al2O3

    Figure  2.  Microstructure of the two composite cathode sintered samples: (a) Fe-TiB2; (b) Fe-TiB2/Al2O3

    圖  3  20 A電解實驗電壓曲線

    Figure  3.  Voltage curve of the 20 A electrolysis experiment

    圖  4  復合陰極電解實驗后形貌圖. (a) 陰極表面宏觀形貌; (b) 試驗所出鋁塊

    Figure  4.  Macroscopic pictures after the composite cathode electrolysis experiment: (a) macroscopic appearance of the cathode surface; (b) aluminum block from the test

    圖  5  陰極表面鋁液層微觀組織及能譜圖. (a) 微觀組織; (b) 取樣點1的能譜圖; (c) 取樣點2的能譜圖

    Figure  5.  Microstructural diagram of the aluminum liquid layer on the cathode surface: (a) microstructure; (b) energy spectrum of sampling point 1; (c) energy spectrum of sampling point 2

    圖  6  電解后陰極表面的微觀組織形貌及能譜圖. (a) 微觀組織; (b) 取樣點3的能譜圖; (c) 取樣點4的能譜圖

    Figure  6.  Microstructural morphology and energy spectrum of the cathode surface: (a) microstructure; (b) energy spectrum of sampling point 3; (c) energy spectrum of sampling point 4

    圖  7  TiB2骨料間微觀組織形貌及能譜圖. (a) 微觀組織; (b) 取樣點5的能譜圖; (c) 取樣點6的能譜圖; (d) 取樣點7的能譜圖; (e) 取樣點8的能譜圖

    Figure  7.  Microstructure and energy spectrum of the TiB2aggregate: (a) microstructure; (b) energy spectrum of sampling point 5; (c) energy spec-trum of sampling point 6; (d) energy spectrum of sampling point 7; (e) energy spectrum of sampling point 8

    表  1  三種材料的相對密度

    Table  1.   Relative density of the three materials

    材料 相對密度/%
    Fe-TiB2/Al2O3復合材料 94.21
    Fe-TiB2復合材料 91.14
    文獻[12]的TiB2/Al2O3復合材料 92.48
    下載: 導出CSV

    表  2  電解后陰極各元素的能譜統計結果

    Table  2.   Statistical analysis of the EDS spectra of each element at the edge of the sample

    元素 能譜結果(質量分數)/%
    取樣點3 取樣點4
    Fe 65.91
    Al 19.68
    Ti 14.41 89.54
    B 10.46
    下載: 導出CSV

    表  3  圖 7取樣點對應各元素的能譜統計結果

    Table  3.   Statistical results of the EDS energy spectrum of the element corresponding to the sampling points in Fig. 7

    元素 取樣點能譜分析結果(質量分數)/%
    取樣點5 取樣點6 取樣點7 取樣點8
    O 4.48 37.35 6.42
    F 11.62 27.97
    Na 1.91 3.53
    Al 13.36 47.49 29.01
    K 0.55 1.47 9.93
    B 10.46 7.07
    Ti 89.54 61.01 13.69 23.15
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Viswanath R P. A patent for generation of electrolytic hydrogen by a cost effective and cheaper route. Int J Hydrogen Energy, 2004, 29(11): 1191 http://www.sciencedirect.com/science/article/pii/S0360319904000722
    [2] Hryn J N, Pellin M J. A dynamic inert metal anode//Light Metals 1999: Proceedings of the Technical Sessions Presented by the Tms Aluminum Committee at the 128th Tms Annual Meeting. San Diego, 1999: 377
    [3] Espen O, Jomar T. The behavior of Feckel ferrite cermet materials as inert anodes//Light Metals 1996: Proceedings of the Technical Sessions Presented by the Tms Aluminum Committee at the 125th Tms Annual Meeting. Anaheim, 1996: 249
    [4] Alton T, Jim B, Ivan E, et al. The operational performance of 70 kA prebake cells retrofitted with TiB2-G cathode elements//Light Metals 1998: Proceedings of the Technical Sessions Presented by the Tms Aluminum Committee at the 127th Tms Annual Meeting. San Antonio, 1998: 257 http://www.researchgate.net/publication/293341903_Operational_performance_of_70_kA_prebake_cells_retrofitted_with_TiB_2-G_cathode_elements
    [5] Alcom T R, Tabereaux A T, Richards N E. Operational results of pilot cell test with cermet inert anodes//Light Metals 1998: Proceedings of the Technical Sessions Presented by the Tms Aluminum Committee at the 127th Tms Annual Meeting. San Antonio, 1998: 433
    [6] Liao X A, ?ye H A. Effects of carbon-bonded coatings on sodium expansion of the cathode in aluminum electrolysis//Light Metals 1999: Proceedings of the Technical Sessions Presented by the Tms Aluminum Committee at the 128th Tms Annual Meeting. San Diego, 1999: 629
    [7] Kang S H, Kim D J, Kang E S, et al. Pressureless sintering and properties of titanium diboride ceramics containing chromium and iron. J Am Ceram Soc, 2001, 84(4): 893 doi: 10.1111/j.1151-2916.2001.tb00763.x
    [8] Finch C B, Tannery V J. Crack formation and swelling of TiB2-Ni ceramics in liquid aluminum. J Am Ceram Soc, 1982, 65(7): c100 doi: 10.1111/j.1151-2916.1982.tb10473.x
    [9] Escribano S, Blachot J F, Ethève J, et al. Characterization of PEMFCs gas diffusion layers properties. J Power Sources, 2006, 156(1): 8 doi: 10.1016/j.jpowsour.2005.08.013
    [10] Sekhar J A, de Nora, Liu J, et al. TiB2/colloidal alumina carbon cathode coatings in Hall-Heroult and drained cells//Light Metals 1998: Proceedings of the Technical Sessions Presented by the Tms Aluminum Committee at the 127th Tms Annual Meeting. San Antonio, 1998: 605 http://www.researchgate.net/publication/296514887_TiB_2colloidal_alumina_carbon_cathode_coatings_in_Hall-Heroult_and_drained_cells
    [11] ?ye H A, de Nora V, Duruz J J, et al. Properties of a colloidal alumina-bonded TiB2 coating on cathode carbon materials//Light Metals 1997: Proceedings of the Technical Sessions Presented by the Tms Aluminum Committee at the 126th Tms Annual Meeting. Orlando, 1997: 1171
    [12] Han S, Li J, Zhang K, et al. Sintering and properties of TiB2/Al2O3 composite cathode for aluminum electrolysis. Nonferrous Met (Extr Metall), 2011(9): 13 doi: 10.3969/j.issn.1007-7545.2011.09.004

    韓碩, 李劼, 張凱, 等. 鋁電解用TiB2/Al2O3復合陰極的燒結與性能研究. 有色金屬(冶煉部分), 2011(9): 13 doi: 10.3969/j.issn.1007-7545.2011.09.004
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數:  800
  • HTML全文瀏覽量:  404
  • PDF下載量:  14
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-07-16
  • 刊出日期:  2019-08-01

目錄

    /

    返回文章
    返回