<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

石墨化碳素鋼室溫壓縮過程中的不均勻變形行為

張永軍 張鵬程 張波 王九花 于文杰 韓靜濤

張永軍, 張鵬程, 張波, 王九花, 于文杰, 韓靜濤. 石墨化碳素鋼室溫壓縮過程中的不均勻變形行為[J]. 工程科學學報, 2019, 41(8): 1037-1044. doi: 10.13374/j.issn2095-9389.2019.08.009
引用本文: 張永軍, 張鵬程, 張波, 王九花, 于文杰, 韓靜濤. 石墨化碳素鋼室溫壓縮過程中的不均勻變形行為[J]. 工程科學學報, 2019, 41(8): 1037-1044. doi: 10.13374/j.issn2095-9389.2019.08.009
ZHANG Yong-jun, ZHANG Peng-cheng, ZHANG Bo, WANG Jiu-hua, YU Wen-jie, HAN Jing-tao. Inhomogeneous deformation behavior in compressive deformation process at room temperature of graphitized carbon steel[J]. Chinese Journal of Engineering, 2019, 41(8): 1037-1044. doi: 10.13374/j.issn2095-9389.2019.08.009
Citation: ZHANG Yong-jun, ZHANG Peng-cheng, ZHANG Bo, WANG Jiu-hua, YU Wen-jie, HAN Jing-tao. Inhomogeneous deformation behavior in compressive deformation process at room temperature of graphitized carbon steel[J]. Chinese Journal of Engineering, 2019, 41(8): 1037-1044. doi: 10.13374/j.issn2095-9389.2019.08.009

石墨化碳素鋼室溫壓縮過程中的不均勻變形行為

doi: 10.13374/j.issn2095-9389.2019.08.009
基金項目: 

北京市自然科學基金資助項目 2172035

詳細信息
    通訊作者:

    張永軍, E-mail: zhangyj@mater.ustb.edu.cn

  • 中圖分類號: TG142.1;TH142.1

Inhomogeneous deformation behavior in compressive deformation process at room temperature of graphitized carbon steel

More Information
  • 摘要: 將0. 46%含碳量(質量分數) 的石墨化碳素鋼在萬能材料試驗機上進行室溫壓縮變形, 試驗鋼表現出良好的壓縮變形性能.根據載荷-位移曲線的變化特點, 試驗鋼的壓縮變形過程以位移7. 0 mm (對應相對壓下量為58. 3%) 為節點分為兩個階段: 在位移≤7. 0 mm的壓縮階段, 載荷呈線性增加, 壓縮試樣的鼓度值逐漸增加而達到一個極大值(14. 6%), 壓縮試樣中心位置的維氏硬度增幅最大, 為38. 1 HV, 至位移7. 0 mm時試樣端面徑向伸長率的增幅為34%;而在位移 > 7. 0 mm的壓縮階段, 載荷呈指數增加, 壓縮試樣的鼓度值從極大值開始逐漸減小, 至位移為10. 72 mm時(相對壓下量為89. 3%), 試樣端面的徑向伸長率相比于位移7. 0 mm時增加了83. 1%, 壓縮試樣的中心位置的維氏硬度增幅最小, 為32. 7 HV.上述試驗數據表明, 在位移≤7. 0 mm的壓縮過程中, 壓縮試樣內的三個不均勻變形區的位置與傳統壓縮模型一致, 但是當壓縮變形進入位移 > 7. 0 mm的壓縮過程中, 試樣中心位置已不再是傳統壓縮模中變形程度最大的變形區了, 即在這個階段試樣中的3個不均勻變形區的變形程度發生了改變.正因這種不均勻變形區變形程度的改變導致了變形過程中載荷的急劇增加和鼓度值的減低.另外, 在壓縮變形過程中, 三個不均勻變形區中石墨粒子的微觀變形量總是高于鐵素體基體, 其原因之一可以歸結為石墨粒子中層與層之間容易于滑動的結果.

     

  • 圖  1  試樣用鋼.(a) 金相組織; (b) 圓柱形壓縮試樣及其上的應變網格(單位: mm)

    Figure  1.  Tested steel: (a) microstructure; (b) cylinder compression sample with the square grid (unit: mm)

    圖  2  不同相對壓下量下壓縮試樣的軸向應變與周向應變之間的對應關系

    Figure  2.  Corresponding relation between axial and circumferential strains of the compression sample under different deformation degree

    圖  3  壓縮變形時的載荷-位移曲線

    Figure  3.  Load-displacement curve in the compression deformation

    圖  4  不同變形程度下壓縮試樣的宏觀形貌.(a) 20%; (b) 40%; (c) 58.3%; (d) 75%; (e) 89.3%

    Figure  4.  Macro profile of samples under different deformation degree: (a) 20%; (b) 40%; (c) 58.3%; (d) 75%; (e) 89.3%

    圖  5  壓縮試樣鼓形程度、端面徑向伸長率與相對壓下量之間的關系

    Figure  5.  Relation between value of drum shape, radial elongation of end face, and deformation degree

    圖  6  壓縮試樣內三個不均勻變形區及其維氏硬度與相對壓下量之間的關系.(a) 壓縮試樣內的三個不均勻變形區; (b) 維氏硬度與相對壓下量之間的關系

    Figure  6.  Nonuniform deformation zones inside compression specimen and the relation between their hardness and deformation degree: (a) three nonuni-form deformation zones; (b) the relation between Vickers hardness and deformation degree

    圖  7  不同相對壓下量時壓縮試樣中心區域的金相組織.(a) 40%; (b) 58.3%; (c) 75%; (d) 89.3%

    Figure  7.  Metallographic structure of cold compression for graphitized carbon steel: (a) 40%; (b) 58.3%; (c) 75%; (d) 89.3%

    圖  8  89.3%相對壓下量試樣內部大變形區石墨粒子變形形態的精細觀察

    Figure  8.  Fine observation on the deformation morphology of graphite particles in the large deformation zone in sample with 89.3%relative reduction using FESEM

    圖  9  石墨粒子和鐵素體基體的微觀變形曲線.(a) 不均勻變形Ⅱ區; (b) 不均勻變形Ⅲ區; (c) 不均勻變形Ⅰ區

    Figure  9.  Micro-deformation curve between graphite particles and ferritic matrix: (a) non-uniform deformation zoneⅡ; (b) non-uniform deformation zoneⅢ; (c) non-uniform deformation zoneⅠ

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Chen X Y, Cao J C, Zhou X L. Effect of heat treatment on microstructure of graphitized free-cutting steel. Hot Working Technol, 2017, 46(4): 234 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201704066.htm

    陳宣宇, 曹建春, 周曉龍. 熱處理對石墨易切削鋼顯微組織的影響. 熱加工工藝, 2017, 46(4): 234 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201704066.htm
    [2] Gao J X, Wei B Q, Li D D, et al. Nucleation and growth characteristics of graphite spheroids in bainite during graphitization annealing of a medium carbon steel. Mater Charact, 2016, 118: 1 doi: 10.1016/j.matchar.2016.05.003
    [3] Chen X Y. Study on Graphitization Technology of Medium Carbon Steel[Dissertation]. Kunming: Kunming University of Science and Technology, 2016

    陳宣宇. 中碳鋼的石墨化工藝研究[學位論文]. 昆明: 昆明理工大學, 2016
    [4] Inam A, He K J, Edmonds D V. Graphitisation: a potential new route to free-machining steels//HSLA Steels 2015, Microalloying 2015 and Offshore Engineering Steels 2015. Hangzhou, 2015: 817
    [5] Inam A, Brydson R, Edmonds D V. Effect of starting microstructure upon the nucleation sites and distribution of graphite particles during a graphitising anneal of an experimental medium-carbon machining steel. Mater Charact, 2015, 106: 86 doi: 10.1016/j.matchar.2015.05.014
    [6] Mokhtari A, Rashidi A M. The transformation of CK45 steel to the dual phase graphite steel and the study of its microstructure. Indian J Fundam Appl Life Sci, 2015, 5(Suppl 2): 1749 http://www.cibtech.org/sp.ed/jls/2015/02/221-JLS-S2-221-RASHIDI-TRANSFORMATION.pdf
    [7] Yin Y Y, Fang F, Yan X, et al. Microstructure and properties of environmental graphitized free-cutting steel. Trans Mater Heat Treat, 2013, 34(4): 133 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201304025.htm

    尹云洋, 方芳, 嚴翔, 等. 環保石墨易切削鋼的組織及性能. 材料熱處理學報, 2013, 34(4): 133 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201304025.htm
    [8] Rounaghi S A, Kiani-Rashid A R. A study on graphitisation acceleration during annealing of martensitic hypereutectoid steel. Phase Transitions, 2011, 84(11-12): 981 doi: 10.1080/01411594.2011.563153
    [9] Zhang Y J, Han J T, Wang Q L, et al. Research and development of graphitized hypoeutectoid free cutting steel. Iron Steel, 2008, 43(8): 73 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT200808020.htm

    張永軍, 韓靜濤, 王全禮, 等. 亞共析石墨化易切削鋼的開發. 鋼鐵, 2008, 43(8): 73 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT200808020.htm
    [10] Zhang Y J, Han J T, Wang Q L, et al. Graphitization process of medium-Carbon steel. Mater Sci Technol, 2009, 17(6): 750 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG200906004.htm

    張永軍, 韓靜濤, 王全禮, 等. 中碳鋼的石墨化過程. 材料科學與工藝, 2009, 17(6): 750 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG200906004.htm
    [11] Iwamoto T, Murakami T. Bar and wire steels for gears and valves of automobiles-eco-friendly free cutting steel without lead addition. JFE Techn Rep, 2004(4): 74 http://www.researchgate.net/publication/290280858_Bar_and_wire_steels_for_gears_and_valves_of_automobiles_-_Eco-friendly_free_cutting_steel_without_lead_addition
    [12] Ji G J, Peng Y H, Ruan X Y. Experimental study on metal free upsetting. Metal Forming Technol, 1999(5): 23 https://www.cnki.com.cn/Article/CJFDTOTAL-JMCX199905008.htm

    嵇國金, 彭穎紅, 阮雪榆. 金屬自由鐓粗的實驗研究. 金屬成形工藝, 1999(5): 23 https://www.cnki.com.cn/Article/CJFDTOTAL-JMCX199905008.htm
    [13] Kudo H, Aoi K. Effect of compression test condition upon fracturing of a medium carbon steel. J Jpn Soc Tech Plast, 1967, 8: 17 http://www.researchgate.net/publication/284696235_Effect_of_compression_test_condition_upon_fracturing_of_a_medium_carbon_steel
    [14] Lee P W, Kuhn H A. Fracture in cold upset forging-a criterion and model. Metall Trans, 1973, 4(4): 969 doi: 10.1007/BF02645597
    [15] Dodd B, Bai Y L, Zhang Z X. A review of free surface cracking in upset forging. Chin J Theor Appl Mech, 1981(5): 474(Dodd B, https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB198105006.htm

    Dodd B, 白以龍, 張志新. 關于鐓粗鍛造中自由表面開裂的綜述. 力學學報, 1981(5): 474 https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB198105006.htm
    [16] Xu S Q, Chen Z Y, Zhang S Y. Research on the relation between bulging and friction in cylinder upsetting. Forging Stamping Technol, 2004(5): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE200405012.htm

    許樹勤, 陳志英, 張善元. 鐓粗試驗中鼓度與摩擦的相關性研究. 鍛壓技術, 2004(5): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-DYJE200405012.htm
  • 加載中
圖(9)
計量
  • 文章訪問數:  765
  • HTML全文瀏覽量:  406
  • PDF下載量:  13
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-08-01
  • 刊出日期:  2019-08-01

目錄

    /

    返回文章
    返回