<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

靜水壓與溶解氧耦合作用對低合金高強鋼腐蝕電化學行為的影響

蘇宏藝 魏世丞 梁義 王玉江 王博 袁悅 徐濱士

蘇宏藝, 魏世丞, 梁義, 王玉江, 王博, 袁悅, 徐濱士. 靜水壓與溶解氧耦合作用對低合金高強鋼腐蝕電化學行為的影響[J]. 工程科學學報, 2019, 41(8): 1029-1036. doi: 10.13374/j.issn2095-9389.2019.08.008
引用本文: 蘇宏藝, 魏世丞, 梁義, 王玉江, 王博, 袁悅, 徐濱士. 靜水壓與溶解氧耦合作用對低合金高強鋼腐蝕電化學行為的影響[J]. 工程科學學報, 2019, 41(8): 1029-1036. doi: 10.13374/j.issn2095-9389.2019.08.008
SU Hong-yi, WEI Shi-cheng, LIANG Yi, WANG Yu-jiang, WANG Bo, YUAN Yue, XU Bin-shi. Combined effect of hydrostatic pressure and dissolved oxygen on the electrochemical behavior of low-alloy high-strength steel[J]. Chinese Journal of Engineering, 2019, 41(8): 1029-1036. doi: 10.13374/j.issn2095-9389.2019.08.008
Citation: SU Hong-yi, WEI Shi-cheng, LIANG Yi, WANG Yu-jiang, WANG Bo, YUAN Yue, XU Bin-shi. Combined effect of hydrostatic pressure and dissolved oxygen on the electrochemical behavior of low-alloy high-strength steel[J]. Chinese Journal of Engineering, 2019, 41(8): 1029-1036. doi: 10.13374/j.issn2095-9389.2019.08.008

靜水壓與溶解氧耦合作用對低合金高強鋼腐蝕電化學行為的影響

doi: 10.13374/j.issn2095-9389.2019.08.008
基金項目: 

國家自然科學基金資助項目 51675533

國家自然科學基金資助項目 51701238

"十三五"裝備預研共用技術資助項目 404010205

詳細信息
    通訊作者:

    魏世丞,E-mail: wsc33333@163.com

  • 中圖分類號: TG172

Combined effect of hydrostatic pressure and dissolved oxygen on the electrochemical behavior of low-alloy high-strength steel

More Information
  • 摘要: 采用動電位極化測試和掃描電子顯微鏡/能譜儀表征, 通過理想動電位極化曲線分析方法和微觀腐蝕形貌觀察研究了靜水壓與溶解氧耦合作用對低合金高強鋼在質量分數為3.5% NaCl溶液中腐蝕電化學行為的影響. 結果表明: 隨著靜水壓和溶解氧溶度的同時增大, 腐蝕電位先增高而后逐漸降低, 腐蝕電流呈非線性增長; 靜水壓與溶解氧在腐蝕過程中存在相互競爭抑制關系, 在靜水壓與溶解氧同時增長過程中, 溶解氧首先促進陰極反應過程并抑制陽極反應過程, 而后靜水壓逐漸加速陽極過程并對陰極反應過程有一定的抑制作用; 靜水壓與溶解氧耦合作用加速了腐蝕產物膜的生長, 增加了低合金高強鋼表面點蝕坑的數量和生長尺寸.

     

  • 圖  1  深海模擬腐蝕試驗機

    Figure  1.  Corrosion testing machine for simulating deep-sea environment

    圖  2  低合金高強鋼的金相組織結構

    Figure  2.  Metallographic structure of low-alloy high-strength steel

    圖  3  低合金高強鋼在不同靜水壓與溶解氧環境下浸泡0.5 h后的動電位極化曲線

    Figure  3.  Potentiodynamic polarization curves of low-alloy high-strength steel with different hydrostatic pressures and dissolved oxygen levels after 0.5 h pre-immersion

    圖  4  利用理想的極化曲線法分析低合金高強鋼在不同靜水壓和溶解氧條件下的動電位極化曲線示意圖

    Figure  4.  Supposed diagram of ideal polarization curves of low-alloy high-strength steel with different hydrostatic pressures and dissolved oxygen levels

    圖  5  低合金高強鋼在不同靜水壓與溶解氧環境下浸泡24 h后的動電位極化曲線

    Figure  5.  Potentiodynamic polarization curves of steel specimens after 24 h pre-immersion with different hydrostatic pressures and dissolved oxygen levels in 3.5% NaCl solution

    圖  6  試樣分別浸泡0.5 h和24 h后的腐蝕電流密度隨靜水壓與溶解氧的變化曲線

    Figure  6.  Corrosion current density of steel specimens with different hydrostatic pressures and dissolved oxygen levels for 0.5 h and 24 h immersion

    圖  7  低合金高強鋼分別在30 ATO和1 ATO條件下浸泡24 h后的微觀形貌. (a) 30 ATO; (b) 1 ATO

    Figure  7.  SEM images of corrosion morphologies of low-alloy high-strength steel at 30 ATO and 1 ATO after 24 h immersion: (a) 30 ATO; (b) 1 ATO

    圖  8  低合金高強鋼分別在30 ATO和1 ATO條件下浸泡96 h后的微觀形貌及相應位置能譜圖. (a) 30 ATO; (b) 1 ATO; (c) 位置1的能譜圖; (d) 位置3的能譜圖; (e) 位置2的能譜圖; (f) 位置4的能譜圖

    Figure  8.  SEM images and EDS of corrosion morphologies of low-alloy high-strength steel at 30 ATO and 1 ATO after 96 h immersion: (a) 30 ATO; (b) 1 ATO; (c) EDS results of position 1; (d) EDS results of position 3; (e) EDS results of position 2; (f) EDS results of position 4

    圖  9  低合金高強鋼在30 ATO和1 ATO條件下浸泡192 h后去除腐蝕產物后的掃描電鏡形貌. (a) 30 ATO; (b) 1 ATO

    Figure  9.  SEM images of corrosion morphologies of low-alloy high-strength steel without corrosion products at 30 ATO and 1 ATO after 96 h immersion: (a) 30 ATO; (b) 1 ATO

    表  1  低合金高強鋼的化學組分(質量分數)

    Table  1.   Chemical composition of the studied low-alloy high-strength steel ?%

    C Si Mn Cr Ni Mo V Fe
    0.1 0.29 0.57 0.6 4.96 0.6 0.09 余量
    下載: 導出CSV

    表  2  利用Tafel外擴法得到的低合金高強鋼動電位極化曲線參數

    Table  2.   Electrochemical corrosion parameters obtained using Tafel extrapolation method

    時間/h 測試環境 Ecorr/V(vs Ag/AgCl) icorr/(μA·cm-2) Va/mV Vc/mV
    0.5 1 ATO -0.60247 6.13 61.299 -146.9
    10 ATO -0.36904 29.49 56.228 -172.01
    30 ATO -0.38763 36.81 59.153 -215.52
    60 ATO -0.46487 39.05 60.089 -172.71
    24 1 ATO -0.52252 2.43 64.909 -100.4
    10 ATO -0.47004 4.90 50.241 -105.5
    30 ATO -0.49089 5.29 62.074 -116.1
    60 ATO -0.51105 5.38 67.626 -111.32
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Beccaria A M, Poggi G. Influence of hydrostatic pressure on pitting of aluminum in sea water. Br Corros J, 1985, 20(4): 183 doi: 10.1179/000705985798272632
    [2] Beccaria A M, Poggi G, Gingaud D, et al. Effect of hydrostatic pressure on passivating power of corrosion layers formed on 6061 T6 aluminum alloy in sea water. Br Corros J, 1994, 29(1): 65 doi: 10.1179/000705994798267962
    [3] Zhang C, Zhang Z W, Liu L. Degradation in pitting resistance of 316L stainless steel under hydrostatic pressure. Electrochim Acta, 2016, 210: 401 doi: 10.1016/j.electacta.2016.05.169
    [4] Yang Y G, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel. Corros Sci, 2010, 52(8): 2697 doi: 10.1016/j.corsci.2010.04.025
    [5] Yang Y G, Zhang T, Shao Y W, et al. New understanding of the effect of hydrostatic pressure on the corrosion of Ni-Cr-Mo-V high strength steel. Corros Sci, 2013, 73: 250 doi: 10.1016/j.corsci.2013.04.013
    [6] Sun H J, Liu L, Li Y, et al. Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel. J Electrochem Soc, 2013, 160(3): C89 doi: 10.1149/2.040303jes
    [7] Zhu X F, Liu L, Song Y, et al. Oxygen evolution and porous anodic alumina formation. Mater Lett, 2008, 62(24): 4038 doi: 10.1016/j.matlet.2008.05.062
    [8] Crossland A C, Habazaki H, Shimizu K, et al. Residual flaws due to formation of oxygen bubbles in anodic alumina. Corros Sci, 1999, 41(10): 1945 doi: 10.1016/S0010-938X(99)00035-9
    [9] Feng Z C, Cheng X Q, Dong C F, et al. Effects of dissolved oxygen on electrochemical and semiconductor properties of 316L stainless steel. J Nucl Mater, 2010, 407(3): 171 doi: 10.1016/j.jnucmat.2010.10.010
    [10] Le D P, Ji W S, Kim J G, et al. Effect of antimony on the corrosion behavior of low-alloy steel for flue gas desulfurization system. Corros Sci, 2008, 50(4): 1195 doi: 10.1016/j.corsci.2007.11.027
    [11] Song S Z. Investigative Methods of Corrosion Electrochemistry. Beijing: Chemical Industry Press, 1988
    [12] Melchers R E. Effect of small compositional changes on marine immersion corrosion of low alloy steels. Corros Sci, 2004, 46(7): 1669 doi: 10.1016/j.corsci.2003.10.004
    [13] Carvalho D S, Joia C J B, Mattos O R. Corrosion rate of iron and iron-chromium alloys in CO2 -medium. Corros Sci, 2005, 47(12): 2974 doi: 10.1016/j.corsci.2005.05.052
    [14] Xu L Y, Cheng Y F. An experimental investigation of corrosion of X100 pipeline steel under uniaxial elastic stress in a near-neutral pH solution. Corros Sci, 2012, 59: 103 doi: 10.1016/j.corsci.2012.02.022
    [15] Xu L Y, Cheng Y F. Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution. Corros Sci, 2012, 64: 145 doi: 10.1016/j.corsci.2012.07.012
    [16] Wang Y X, Zhao W M, Ai H, et al. Effects of strain on the corrosion behaviour of X80 steel. Corros Sci, 2011, 53(9): 2761 doi: 10.1016/j.corsci.2011.05.011
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  877
  • HTML全文瀏覽量:  474
  • PDF下載量:  21
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-03-26
  • 刊出日期:  2019-08-01

目錄

    /

    返回文章
    返回