<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

室溫注氫Fe-Cr合金在不同溫度退火后位錯環的表征

杜玉峰 崔麗娟 萬發榮

杜玉峰, 崔麗娟, 萬發榮. 室溫注氫Fe-Cr合金在不同溫度退火后位錯環的表征[J]. 工程科學學報, 2019, 41(8): 1016-1028. doi: 10.13374/j.issn2095-9389.2019.08.007
引用本文: 杜玉峰, 崔麗娟, 萬發榮. 室溫注氫Fe-Cr合金在不同溫度退火后位錯環的表征[J]. 工程科學學報, 2019, 41(8): 1016-1028. doi: 10.13374/j.issn2095-9389.2019.08.007
DU Yu-feng, CUI Li-juan, WAN Fa-rong. Characterization of dislocation loops in hydrogen ion-implanted Fe-Cr alloy annealed at different temperatures[J]. Chinese Journal of Engineering, 2019, 41(8): 1016-1028. doi: 10.13374/j.issn2095-9389.2019.08.007
Citation: DU Yu-feng, CUI Li-juan, WAN Fa-rong. Characterization of dislocation loops in hydrogen ion-implanted Fe-Cr alloy annealed at different temperatures[J]. Chinese Journal of Engineering, 2019, 41(8): 1016-1028. doi: 10.13374/j.issn2095-9389.2019.08.007

室溫注氫Fe-Cr合金在不同溫度退火后位錯環的表征

doi: 10.13374/j.issn2095-9389.2019.08.007
基金項目: 

國家自然科學基金資助項目 51471026

詳細信息
    通訊作者:

    萬發榮, E-mail: wanfr@mater.ustb.edu.cn

  • 中圖分類號: TL62+7

Characterization of dislocation loops in hydrogen ion-implanted Fe-Cr alloy annealed at different temperatures

More Information
  • 摘要: 利用透射電子顯微鏡, 通過構建位錯環在不同晶帶軸下的投影圖結合位錯環消光判據, 對室溫注氫后Fe-9%Cr模型合金在400、500及550℃退火形成的1/2 〈111〉和〈100〉兩種類型的位錯環進行了表征. 實驗結果表明, 室溫注氫Fe-9%Cr合金中柏氏矢量為〈100〉型位錯環的數量隨著退火溫度的升高而逐漸增加. 在400和500℃退火后, 〈100〉型位錯環所占比例分別為16.48%、92.78%;當退火溫度升高到550℃時, 位錯環全部轉變為〈100〉型位錯環. Fe-9%Cr合金中位錯環類型轉變溫度區間為400~500℃, 與純鐵相比, 添加Cr元素能夠使位錯環類型轉變溫度升高.

     

  • 圖  1  由SRIM2008軟件模擬計算得到的注氫后Fe-9%Cr合金中的輻照損傷量及氫離子濃度分布

    Figure  1.  Displacement damage and hydrogen concentration profile in Fe-9%Cr model alloy after 30 keV hydrogen ion irradiation calculated using SRIM-2008

    圖  2  1/2 [111] (111)型位錯環在(001)面上的投影示意圖

    Figure  2.  Illustration of 1/2 [111] (111) loop projection on a (001) plane

    圖  3  1/2 〈111〉和〈100〉型位錯環在[001]晶帶軸下的投影示意圖

    Figure  3.  Schematic map of 1/2 〈111〉 and 〈100〉 loops projected along the [001] zone axis

    圖  4  1/2 〈111〉和〈100〉型位錯環在[011]晶帶軸下的投影示意圖

    Figure  4.  Schematic map of 1/2 〈111〉 and 〈100〉 loops projected along the [011] zone axis

    圖  5  1/2 〈111〉和〈100〉型位錯環在[111]晶帶軸下的投影示意圖

    Figure  5.  Schematic map of 1/2 〈111〉 and 〈100〉 loops projected along the [111] zone axis

    圖  6  氫離子輻照前后Fe-9%Cr合金顯微組織. (a) 輻照前; (b) 輻照后

    Figure  6.  Microstructures of Fe-9%Cr: (a) before hydrogen implantation; (b) after hydrogen implantation

    圖  7  注氫Fe-9%Cr合金在400 ℃退火后的相關圖像. (a) 衍射花樣; (b) 位錯環在[001]晶帶軸下,衍射矢量g =[200]的明場像; (c) 對應的位錯環投影示意圖(考慮g·b =0不可見判據)

    Figure  7.  Images of hydrogen ion implanted Fe-9%Cr alloy after annealing at 400 ℃: (a) the diffraction pattern; (b) the bright-field image with diffraction vector g =[200] under the [001] zone axis; (c) the corresponding dislocation loop map under the [001] zone axis (considering g·b =0 invisibility criterion)

    圖  8  注氫Fe-9%Cr合金在400 ℃退火后的相關圖像. (a) 衍射花樣; (b) 位錯環在[001]晶帶軸下,衍射矢量g =[020]的明場像; (c) 對應的位錯環投影示意圖(考慮g·b =0不可見判據)

    Figure  8.  Images of hydrogen ion implanted Fe-9%Cr alloy after annealing at 400 ℃: (a) the diffraction pattern; (b) the bright-field image with diffraction vector g =[020] under the [001] zone axis; (c) the corresponding dislocation loop map under the [001] zone axis (considering g·b =0 invisibility criterion)

    圖  9  注氫Fe-9%Cr合金在400 ℃退火后的相關圖像. (a) 衍射花樣; (b) 位錯環在[001]晶帶軸下,衍射矢量g =[110]的明場像; (c) 對應的位錯環投影示意圖(考慮g·b =0不可見判據)

    Figure  9.  Images of hydrogen ion implanted Fe-9%Cr alloy after annealing at 400 ℃: (a) the diffraction pattern; (b) the bright-field image with diffraction vector g =[110] under the [001] zone axis; (c) the corresponding dislocation loop map under the [001] zone axis (considering g·b =0 invisibility criterion)

    圖  10  注氫Fe-9%Cr合金在400 ℃退火后的相關圖像. (a) 衍射花樣; (b) 位錯環在[001]晶帶軸下,衍射矢量g =[110]的明場像; (c) 對應的位錯環投影示意圖(考慮g·b =0不可見判據)

    Figure  10.  Images of hydrogen ion implanted Fe-9%Cr alloy after annealing at 400 ℃: (a) the diffraction pattern; (b) the bright-field image with diffraction vector g =[110] under the [001] zone axis; (c) the corresponding dislocation loop map under the [001] zone axis (considering g·b =0 invisibility criterion)

    圖  11  注氫Fe-9%Cr合金在500 ℃退火后的相關圖像. (a) 衍射花樣; (b) 位錯環在[011]晶帶軸下,衍射矢量g =[200]的明場像; (c) 對應的位錯環投影示意圖(考慮g·b =0不可見判據)

    Figure  11.  Images of hydrogen ion implanted Fe-9%Cr alloy after annealing at 500 ℃: (a) the diffraction pattern; (b) the bright-field image with diffraction vector g =[200]under the [011] zone axis; (c) the corresponding dislocation loop map under the [011] zone axis (considering g·b =0 invisibility criterion)

    圖  12  注氫Fe-9%Cr合金在500 ℃退火后的相關圖像. (a) 衍射花樣; (b) 位錯環在[011]晶帶軸下,衍射矢量g =[011]的明場像; (c) 對應的位錯環投影示意圖(考慮g·b =0不可見判據)

    Figure  12.  Images of hydrogen ion implanted Fe-9%Cr alloy after annealing at 500 ℃: (a) the diffraction pattern; (b) the bright-field image with diffraction vector g =[011] under the [011] zone axis; (c) the corresponding dislocation loop map under the [011] zone axis (considering g·b =0 invisibility criterion)

    圖  13  注氫Fe-9%Cr合金在550 ℃退火后的相關圖像. (a) 衍射花樣; (b) 位錯環在[001]晶帶軸下,衍射矢量g =[110]的明場像; (c) 對應的位錯環投影示意圖(考慮g·b =0不可見判據)

    Figure  13.  Images of hydrogen ion implanted Fe-9%Cr alloy after annealing at 550 ℃: (a) the diffraction pattern; (b) the bright-field image with diffraction vector g =[110] under the [001] zone axis; (c) the corresponding dislocation loop map under the [001] zone axis (considering g·b =0 invisibility criterion)

    圖  14  注氫Fe-9% Cr合金在550 ℃退火后的相關圖像. (a) 衍射花樣; (b) 位錯環在[011]晶帶軸下,衍射矢量g =[011]的明場像; (c) 對應的位錯環投影示意圖(考慮g·b =0不可見判據)

    Figure  14.  Images of hydrogen ion implanted Fe-9%Cr alloy after annealing at 550 ℃: (a) the diffraction pattern; (b) the bright-field image with diffraction vector g =[011] under the [011] zone axis; (c) the corresponding dislocation loop map under the [011] zone axis (considering g·b =0 invisibility criterion)

    圖  15  注氫Fe-9%Cr合金在400,500,550 ℃退火后形成的1/2 〈111〉和〈100〉間隙型位錯環的數目以及〈100〉型位錯環所占比例

    Figure  15.  Number and proportion of 1/2 〈111〉 and 〈100〉 dislocation loops in hydrogen ion implanted Fe-9%Cr alloy after annealing at 400, 500 and 550 ℃

    表  1  Fe-Cr合金化學成分(質量分數)

    Table  1.   Chemical composition of Fe-Cr alloy ?%

    Cr C N Fe
    9.43 0.013 0.008 余量
    下載: 導出CSV

    表  2  〈100〉和1/2 〈111〉位錯環在[001]晶帶軸下觀察時位錯環的慣習面與投影面的晶體學信息

    Table  2.   Crystallographic information between dislocation-loop habit planes and the (100) plane when imaged under the [001] zone axis

    位錯環柏氏矢量,b 慣習面 夾角,θ/(°) cosθ 交線方向
    [100] (100) 90 0 [010]
    [010] (010) 90 0 [100]
    [001] (001) 0 1 平行
    [111] (111) 54.74 0.58 [110]
    [111] (111) 54.74 0.58 [110]
    [111] (111) 54.74 0.58 [110]
    [111] (111) 54.74 0.58 [110]
    下載: 導出CSV

    表  3  〈100〉和1/2 〈111〉位錯環在[011]晶帶軸下觀察時位錯環的慣習面與投影面的晶體學信息

    Table  3.   Crystallographic information between dislocation-loop habit planes and the (011) plane when imaged under the [011] zone axis

    位錯環柏氏矢量,b 慣習面 夾角,θ/(°) cosθ 交線方向
    [100] (100) 90 0 [011]
    [010] (010) 45 0.71 [100]
    [001] (001) 45 0.71 [100]
    [111] (111) 35.26 0.82 [011]
    [111] (111) 35.26 0.82 [011]
    [111] (111) 90 0 [211]
    [111] (111) 90 0 [211]
    下載: 導出CSV

    表  4  〈100〉和1/2 〈111〉位錯環在[111]晶帶軸下觀察時位錯環的慣習面與投影面的晶體學信息

    Table  4.   Crystallographic information between dislocation-loop habit planes and the (111) plane when imaged under the [111] zone axis

    位錯環柏氏矢量,b 慣習面 夾角,θ/(°) cosθ 交線方向
    [100] (100) 54.74 0.58 [011]
    [010] (010) 54.74 0.58 [101]
    [001] (001) 54.74 0.58 [110]
    [111] (111) 0 1 平行
    [111] (111) 70.53 0.33 [011]
    [111] (111) 70.53 0.33 [101]
    [111] (111) 70.53 0.33 [110]
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Sch?ublin R, Chiu Y L. Effect of helium on irradiation-induced hardening of iron: a simulation point of view. J Nucl Mater, 2007, 362(2-3): 152 doi: 10.1016/j.jnucmat.2007.01.187
    [2] Matijasevic M, Almazouzi A. Effect of Cr on the mechanical properties and microstructure of Fe-Cr model alloys after n-irradiation. J Nucl Mater, 2008, 377(1): 147 doi: 10.1016/j.jnucmat.2008.02.061
    [3] Guo L P, Luo F F, Yu Y X. Dislocation Loops in Irradiated Nuclear Materials. Beijing: National Defense Industry Press, 2017

    郭立平, 羅鳳鳳, 于雁霞. 核材料輻照位錯環. 北京: 國防工業出版社, 2017
    [4] Kimura A. Current status of reduced-activation ferritic/martensitic steels R & D for fusion energy. Mater Trans, 2005, 46(3): 394 doi: 10.2320/matertrans.46.394
    [5] Qiao J S, Huang Y N, Xiao X, et al. Microstructural evolution of CLAM steel upon high energy electron irradiation at 450 ℃. J Univ Sci Technol Beijing, 2009, 31(7): 842 doi: 10.3321/j.issn:1001-053X.2009.07.007

    喬建生, 黃依娜, 肖鑫, 等. 450 ℃高能電子輻照對CLAM鋼微觀結構的影響. 北京科技大學學報, 2009, 31(7): 842 doi: 10.3321/j.issn:1001-053X.2009.07.007
    [6] Willaime F, Fu C C, Marinica M C, et al. Stability and mobility of self-interstitials and small interstitial clusters in α-iron: ab initio and empirical potential calculations. Nucl Instrum Methods Phys Res Sect B, 2005, 228(1-4): 92 doi: 10.1016/j.nimb.2004.10.028
    [7] Wirth B D, Odette G R, Maroudas D, et al. Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron. J Nucl Mater, 2000, 276(1-3): 33 doi: 10.1016/S0022-3115(99)00166-X
    [8] Olsson P, Domain C, Wallenius J. Ab initio study of Cr interactions with point defects in bcc Fe. Phys Rev B, 2007, 75(1): 014110 doi: 10.1103/PhysRevB.75.014110
    [9] Olsson P. Ab initio study of interstitial migration in Fe-Cr alloys. J Nucl Mater, 2009, 386-388: 86 doi: 10.1016/j.jnucmat.2008.12.065
    [10] Chen J, Jung P, Hoffelner W, et al. Dislocation loops and bubbles in oxide dispersion strengthened ferritic steel after helium implantation under stress. Acta Mater, 2008, 56(2): 250 doi: 10.1016/j.actamat.2007.09.016
    [11] Kirk M A, Robertson I M, Jenkins M L, et al. The collapse of defect cascades to dislocation loops. J Nucl Mater, 1987, 149(1): 21 doi: 10.1016/0022-3115(87)90494-6
    [12] Osetsky Y N, Bacon D J, Serra A, et al. Stability and mobility of defect clusters and dislocation loops in metals. J Nucl Mater, 2000, 276(1-3): 65 doi: 10.1016/S0022-3115(99)00170-1
    [13] Kuramoto E. Computer simulation of fundamental features of a bias factor. J Nucl Mater, 1992, 191-194: 1279 doi: 10.1016/0022-3115(92)90680-J
    [14] Eyre B L, Bartlett A F. An electron microscope study of neutron irradiation damage in alpha-iron. Philos Mag, 1965, 12(116): 261 doi: 10.1080/14786436508218869
    [15] Masters B C. Dislocation loops in irradiated iron. Nature, 1963, 200(4903): 254
    [16] Jenkins M L, Yao Z, Hernández-Mayoral M, et al. Dynamic observations of heavy-ion damage in Fe and Fe-Cr alloys. J Nucl Mater, 2009, 389(2): 197 doi: 10.1016/j.jnucmat.2009.02.003
    [17] Prokhodtseva A, Décamps B, Ramar A, et al. Impact of He and Cr on defect accumulation in ion-irradiated ultrahigh-purity Fe(Cr) alloys. Acta Mater, 2013, 61(18): 6958 doi: 10.1016/j.actamat.2013.08.007
    [18] Qiao J S, Zhao F, Huang Y N, et al. Effect of hydrogen ion irradiation on the microstructure of CLAM steel. J Univ Sci Technol Beijing, 2009, 31(4): 445 doi: 10.3321/j.issn:1001-053X.2009.04.008

    喬建生, 趙飛, 黃依娜, 等. 氫離子輻照對CLAM鋼微觀結構的影響. 北京科技大學學報, 2009, 31(4): 445 doi: 10.3321/j.issn:1001-053X.2009.04.008
    [19] Stoller R E, Toloczko M B, Was G S, et al. On the use of SRIM for computing radiation damage exposure. Nucl Instrum Methods Phys Res Sect B, 2013, 310: 75 doi: 10.1016/j.nimb.2013.05.008
    [20] Yao B, Edwards D J, Kurtz R J. TEM characterization of dislocation loops in irradiated bcc Fe-based steels. J Nucl Mater, 2013, 434(1-3): 402 doi: 10.1016/j.jnucmat.2012.12.002
    [21] Yao Z, Hernández-Mayoral M, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 1: damage evolution in thin-foils at lower doses. Philos Mag, 2008, 88(21): 2851 doi: 10.1080/14786430802380469
    [22] Hernández-Mayoral M, Yao Z, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 2: damage evolution in thin-foils at higher doses. Philos Mag, 2008, 88(21): 2881 doi: 10.1080/14786430802380477
    [23] Dudarev S L, Bullough R, Derlet P M. Effect of the α-γ phase transition on the stability of dislocation loops in bcc iron. Phys Rev Lett, 2008, 100(13): 135503-1 http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000100000013135503000001&idtype=cvips&gifs=Yes
    [24] Marian J, Wirth B D, Sch?ublin R, et al. 〈100〉-loop characterization in α-Fe: comparison between experiments and modeling. J Nucl Mater, 2002, 307-311: 871 doi: 10.1016/S0022-3115(02)01158-3
    [25] Marian J, Wirth B D, Perlado J M. Mechanism of formation and growth of 〈100〉 interstitial loops in ferritic materials. Phys Rev Lett, 2002, 88(25): 255507-1 http://www.ncbi.nlm.nih.gov/pubmed/12097099
    [26] Masters B C. Dislocation loops in irradiated iron. Philos Mag, 1965, 11(113): 881 doi: 10.1080/14786436508223952
    [27] Arakawa K, Hatanaka M, Kuramoto E, et al. Changes in the Burgers vector of perfect dislocation loops without contact with the external dislocations. Phys Rev Lett, 2006, 96(12): 125506-1 http://www.ncbi.nlm.nih.gov/pubmed/16605927
    [28] Yao Z, Jenkins M L, Hernández-Mayoral M, et al. The temperature dependence of heavy-ion damage in iron: a microstructural transition at elevated temperatures. Philos Mag, 2010, 90(35-36): 4623 doi: 10.1080/14786430903430981
    [29] Porollo S I, Dvoriashin A M, Vorobyev A N, et al. The microstructure and tensile properties of Fe-Cr alloys after neutron irradiation at 400 ℃ to 5.5-7.1 dpa. J Nucl Mater, 1998, 256(2-3): 247 doi: 10.1016/S0022-3115(98)00043-9
    [30] Xu S, Yao Z, Jenkins M L. TEM characterisation of heavy-ion irradiation damage in Fe-Cr alloys. J Nucl Mater, 2009, 386-388: 161 doi: 10.1016/j.jnucmat.2008.12.078
  • 加載中
圖(15) / 表(4)
計量
  • 文章訪問數:  1162
  • HTML全文瀏覽量:  536
  • PDF下載量:  48
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-07-16
  • 刊出日期:  2019-08-01

目錄

    /

    返回文章
    返回