Characterization of dislocation loops in hydrogen ion-implanted Fe-Cr alloy annealed at different temperatures
-
摘要: 利用透射電子顯微鏡, 通過構建位錯環在不同晶帶軸下的投影圖結合位錯環消光判據, 對室溫注氫后Fe-9%Cr模型合金在400、500及550℃退火形成的1/2 〈111〉和〈100〉兩種類型的位錯環進行了表征. 實驗結果表明, 室溫注氫Fe-9%Cr合金中柏氏矢量為〈100〉型位錯環的數量隨著退火溫度的升高而逐漸增加. 在400和500℃退火后, 〈100〉型位錯環所占比例分別為16.48%、92.78%;當退火溫度升高到550℃時, 位錯環全部轉變為〈100〉型位錯環. Fe-9%Cr合金中位錯環類型轉變溫度區間為400~500℃, 與純鐵相比, 添加Cr元素能夠使位錯環類型轉變溫度升高.Abstract: Reduced-activation ferritic/martensitic (RAFM) steels, based on Fe-Cr alloys, have been considered to be one of the most promising candidate structural materials for future fusion reactors. Dislocation loops, as one of the most common microstructures induced by radiation, are the key factors in the deterioration of material properties. Dislocation loops with different Burgers vectors have different effects on material properties. Currently, a consensus exists suggesting that there are two kinds of dislocation loops with Burgers vectors of 1/2 〈111〉 and 〈100〉 in bcc iron-based alloys. In this study, the Burgers vectors of dislocation loops formed at the annealing temperatures of 400, 500, and 550℃ in hydrogen-ion implanted Fe-9%Cr model alloy were examined based on dislocation loop maps and dislocation loop invisibility criteria. Dislocation loop maps manifest such that under the 〈100〉 or 〈110〉 zone axes, it is easy to distinguish 1/2 〈111〉 and 〈100〉 edge dislocation loops, while under the 〈111〉 zone axis, the loops cannot be distinguished. By direct comparison between loop maps and loop images obtained through transmission electron microscope (TEM), the dislocation loops with Burgers vectors of 1/2 〈111〉 and 〈100〉, formed at different annealing temperatures, were characterized. The results of the characterization show that with increasing annealing temperature, the size of the dislocation loops increases while density decreases. Furthermore, the proportion of dislocation loops with a Burgers vector of 〈100〉 increases with rising temperature. After annealing at 400℃ and 500℃, the percentages of 〈100〉 type dislocation loops are 16.48% and 92.78% respectively, in hydrogen-ion implanted Fe-9%Cr alloy. While the temperature is raised to 550℃, all the dislocation loops are of 〈100〉 type loops. This indicates that the transition temperature range of dislocation loops in Fe-9%Cr is 400℃-500℃. Compared with pure iron, the presence of Cr element promotes the transition temperature of dislocation loops from 1/2 〈111〉 type to 〈100〉 type.
-
圖 7 注氫Fe-9%Cr合金在400 ℃退火后的相關圖像. (a) 衍射花樣; (b) 位錯環在[001]晶帶軸下,衍射矢量g =[200]的明場像; (c) 對應的位錯環投影示意圖(考慮g·b =0不可見判據)
Figure 7. Images of hydrogen ion implanted Fe-9%Cr alloy after annealing at 400 ℃: (a) the diffraction pattern; (b) the bright-field image with diffraction vector g =[200] under the [001] zone axis; (c) the corresponding dislocation loop map under the [001] zone axis (considering g·b =0 invisibility criterion)
圖 8 注氫Fe-9%Cr合金在400 ℃退火后的相關圖像. (a) 衍射花樣; (b) 位錯環在[001]晶帶軸下,衍射矢量g =[020]的明場像; (c) 對應的位錯環投影示意圖(考慮g·b =0不可見判據)
Figure 8. Images of hydrogen ion implanted Fe-9%Cr alloy after annealing at 400 ℃: (a) the diffraction pattern; (b) the bright-field image with diffraction vector g =[020] under the [001] zone axis; (c) the corresponding dislocation loop map under the [001] zone axis (considering g·b =0 invisibility criterion)
圖 9 注氫Fe-9%Cr合金在400 ℃退火后的相關圖像. (a) 衍射花樣; (b) 位錯環在[001]晶帶軸下,衍射矢量g =[110]的明場像; (c) 對應的位錯環投影示意圖(考慮g·b =0不可見判據)
Figure 9. Images of hydrogen ion implanted Fe-9%Cr alloy after annealing at 400 ℃: (a) the diffraction pattern; (b) the bright-field image with diffraction vector g =[110] under the [001] zone axis; (c) the corresponding dislocation loop map under the [001] zone axis (considering g·b =0 invisibility criterion)
圖 10 注氫Fe-9%Cr合金在400 ℃退火后的相關圖像. (a) 衍射花樣; (b) 位錯環在[001]晶帶軸下,衍射矢量g =[110]的明場像; (c) 對應的位錯環投影示意圖(考慮g·b =0不可見判據)
Figure 10. Images of hydrogen ion implanted Fe-9%Cr alloy after annealing at 400 ℃: (a) the diffraction pattern; (b) the bright-field image with diffraction vector g =[110] under the [001] zone axis; (c) the corresponding dislocation loop map under the [001] zone axis (considering g·b =0 invisibility criterion)
圖 11 注氫Fe-9%Cr合金在500 ℃退火后的相關圖像. (a) 衍射花樣; (b) 位錯環在[011]晶帶軸下,衍射矢量g =[200]的明場像; (c) 對應的位錯環投影示意圖(考慮g·b =0不可見判據)
Figure 11. Images of hydrogen ion implanted Fe-9%Cr alloy after annealing at 500 ℃: (a) the diffraction pattern; (b) the bright-field image with diffraction vector g =[200]under the [011] zone axis; (c) the corresponding dislocation loop map under the [011] zone axis (considering g·b =0 invisibility criterion)
圖 12 注氫Fe-9%Cr合金在500 ℃退火后的相關圖像. (a) 衍射花樣; (b) 位錯環在[011]晶帶軸下,衍射矢量g =[011]的明場像; (c) 對應的位錯環投影示意圖(考慮g·b =0不可見判據)
Figure 12. Images of hydrogen ion implanted Fe-9%Cr alloy after annealing at 500 ℃: (a) the diffraction pattern; (b) the bright-field image with diffraction vector g =[011] under the [011] zone axis; (c) the corresponding dislocation loop map under the [011] zone axis (considering g·b =0 invisibility criterion)
圖 13 注氫Fe-9%Cr合金在550 ℃退火后的相關圖像. (a) 衍射花樣; (b) 位錯環在[001]晶帶軸下,衍射矢量g =[110]的明場像; (c) 對應的位錯環投影示意圖(考慮g·b =0不可見判據)
Figure 13. Images of hydrogen ion implanted Fe-9%Cr alloy after annealing at 550 ℃: (a) the diffraction pattern; (b) the bright-field image with diffraction vector g =[110] under the [001] zone axis; (c) the corresponding dislocation loop map under the [001] zone axis (considering g·b =0 invisibility criterion)
圖 14 注氫Fe-9% Cr合金在550 ℃退火后的相關圖像. (a) 衍射花樣; (b) 位錯環在[011]晶帶軸下,衍射矢量g =[011]的明場像; (c) 對應的位錯環投影示意圖(考慮g·b =0不可見判據)
Figure 14. Images of hydrogen ion implanted Fe-9%Cr alloy after annealing at 550 ℃: (a) the diffraction pattern; (b) the bright-field image with diffraction vector g =[011] under the [011] zone axis; (c) the corresponding dislocation loop map under the [011] zone axis (considering g·b =0 invisibility criterion)
表 1 Fe-Cr合金化學成分(質量分數)
Table 1. Chemical composition of Fe-Cr alloy ?
% Cr C N Fe 9.43 0.013 0.008 余量 表 2 〈100〉和1/2 〈111〉位錯環在[001]晶帶軸下觀察時位錯環的慣習面與投影面的晶體學信息
Table 2. Crystallographic information between dislocation-loop habit planes and the (100) plane when imaged under the [001] zone axis
位錯環柏氏矢量,b 慣習面 夾角,θ/(°) cosθ 交線方向 [100] (100) 90 0 [010] [010] (010) 90 0 [100] [001] (001) 0 1 平行 [111] (111) 54.74 0.58 [110] [111] (111) 54.74 0.58 [110] [111] (111) 54.74 0.58 [110] [111] (111) 54.74 0.58 [110] 表 3 〈100〉和1/2 〈111〉位錯環在[011]晶帶軸下觀察時位錯環的慣習面與投影面的晶體學信息
Table 3. Crystallographic information between dislocation-loop habit planes and the (011) plane when imaged under the [011] zone axis
位錯環柏氏矢量,b 慣習面 夾角,θ/(°) cosθ 交線方向 [100] (100) 90 0 [011] [010] (010) 45 0.71 [100] [001] (001) 45 0.71 [100] [111] (111) 35.26 0.82 [011] [111] (111) 35.26 0.82 [011] [111] (111) 90 0 [211] [111] (111) 90 0 [211] 表 4 〈100〉和1/2 〈111〉位錯環在[111]晶帶軸下觀察時位錯環的慣習面與投影面的晶體學信息
Table 4. Crystallographic information between dislocation-loop habit planes and the (111) plane when imaged under the [111] zone axis
位錯環柏氏矢量,b 慣習面 夾角,θ/(°) cosθ 交線方向 [100] (100) 54.74 0.58 [011] [010] (010) 54.74 0.58 [101] [001] (001) 54.74 0.58 [110] [111] (111) 0 1 平行 [111] (111) 70.53 0.33 [011] [111] (111) 70.53 0.33 [101] [111] (111) 70.53 0.33 [110] 259luxu-164 -
參考文獻
[1] Sch?ublin R, Chiu Y L. Effect of helium on irradiation-induced hardening of iron: a simulation point of view. J Nucl Mater, 2007, 362(2-3): 152 doi: 10.1016/j.jnucmat.2007.01.187 [2] Matijasevic M, Almazouzi A. Effect of Cr on the mechanical properties and microstructure of Fe-Cr model alloys after n-irradiation. J Nucl Mater, 2008, 377(1): 147 doi: 10.1016/j.jnucmat.2008.02.061 [3] Guo L P, Luo F F, Yu Y X. Dislocation Loops in Irradiated Nuclear Materials. Beijing: National Defense Industry Press, 2017郭立平, 羅鳳鳳, 于雁霞. 核材料輻照位錯環. 北京: 國防工業出版社, 2017 [4] Kimura A. Current status of reduced-activation ferritic/martensitic steels R & D for fusion energy. Mater Trans, 2005, 46(3): 394 doi: 10.2320/matertrans.46.394 [5] Qiao J S, Huang Y N, Xiao X, et al. Microstructural evolution of CLAM steel upon high energy electron irradiation at 450 ℃. J Univ Sci Technol Beijing, 2009, 31(7): 842 doi: 10.3321/j.issn:1001-053X.2009.07.007喬建生, 黃依娜, 肖鑫, 等. 450 ℃高能電子輻照對CLAM鋼微觀結構的影響. 北京科技大學學報, 2009, 31(7): 842 doi: 10.3321/j.issn:1001-053X.2009.07.007 [6] Willaime F, Fu C C, Marinica M C, et al. Stability and mobility of self-interstitials and small interstitial clusters in α-iron: ab initio and empirical potential calculations. Nucl Instrum Methods Phys Res Sect B, 2005, 228(1-4): 92 doi: 10.1016/j.nimb.2004.10.028 [7] Wirth B D, Odette G R, Maroudas D, et al. Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron. J Nucl Mater, 2000, 276(1-3): 33 doi: 10.1016/S0022-3115(99)00166-X [8] Olsson P, Domain C, Wallenius J. Ab initio study of Cr interactions with point defects in bcc Fe. Phys Rev B, 2007, 75(1): 014110 doi: 10.1103/PhysRevB.75.014110 [9] Olsson P. Ab initio study of interstitial migration in Fe-Cr alloys. J Nucl Mater, 2009, 386-388: 86 doi: 10.1016/j.jnucmat.2008.12.065 [10] Chen J, Jung P, Hoffelner W, et al. Dislocation loops and bubbles in oxide dispersion strengthened ferritic steel after helium implantation under stress. Acta Mater, 2008, 56(2): 250 doi: 10.1016/j.actamat.2007.09.016 [11] Kirk M A, Robertson I M, Jenkins M L, et al. The collapse of defect cascades to dislocation loops. J Nucl Mater, 1987, 149(1): 21 doi: 10.1016/0022-3115(87)90494-6 [12] Osetsky Y N, Bacon D J, Serra A, et al. Stability and mobility of defect clusters and dislocation loops in metals. J Nucl Mater, 2000, 276(1-3): 65 doi: 10.1016/S0022-3115(99)00170-1 [13] Kuramoto E. Computer simulation of fundamental features of a bias factor. J Nucl Mater, 1992, 191-194: 1279 doi: 10.1016/0022-3115(92)90680-J [14] Eyre B L, Bartlett A F. An electron microscope study of neutron irradiation damage in alpha-iron. Philos Mag, 1965, 12(116): 261 doi: 10.1080/14786436508218869 [15] Masters B C. Dislocation loops in irradiated iron. Nature, 1963, 200(4903): 254 [16] Jenkins M L, Yao Z, Hernández-Mayoral M, et al. Dynamic observations of heavy-ion damage in Fe and Fe-Cr alloys. J Nucl Mater, 2009, 389(2): 197 doi: 10.1016/j.jnucmat.2009.02.003 [17] Prokhodtseva A, Décamps B, Ramar A, et al. Impact of He and Cr on defect accumulation in ion-irradiated ultrahigh-purity Fe(Cr) alloys. Acta Mater, 2013, 61(18): 6958 doi: 10.1016/j.actamat.2013.08.007 [18] Qiao J S, Zhao F, Huang Y N, et al. Effect of hydrogen ion irradiation on the microstructure of CLAM steel. J Univ Sci Technol Beijing, 2009, 31(4): 445 doi: 10.3321/j.issn:1001-053X.2009.04.008喬建生, 趙飛, 黃依娜, 等. 氫離子輻照對CLAM鋼微觀結構的影響. 北京科技大學學報, 2009, 31(4): 445 doi: 10.3321/j.issn:1001-053X.2009.04.008 [19] Stoller R E, Toloczko M B, Was G S, et al. On the use of SRIM for computing radiation damage exposure. Nucl Instrum Methods Phys Res Sect B, 2013, 310: 75 doi: 10.1016/j.nimb.2013.05.008 [20] Yao B, Edwards D J, Kurtz R J. TEM characterization of dislocation loops in irradiated bcc Fe-based steels. J Nucl Mater, 2013, 434(1-3): 402 doi: 10.1016/j.jnucmat.2012.12.002 [21] Yao Z, Hernández-Mayoral M, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 1: damage evolution in thin-foils at lower doses. Philos Mag, 2008, 88(21): 2851 doi: 10.1080/14786430802380469 [22] Hernández-Mayoral M, Yao Z, Jenkins M L, et al. Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 2: damage evolution in thin-foils at higher doses. Philos Mag, 2008, 88(21): 2881 doi: 10.1080/14786430802380477 [23] Dudarev S L, Bullough R, Derlet P M. Effect of the α-γ phase transition on the stability of dislocation loops in bcc iron. Phys Rev Lett, 2008, 100(13): 135503-1 http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000100000013135503000001&idtype=cvips&gifs=Yes [24] Marian J, Wirth B D, Sch?ublin R, et al. 〈100〉-loop characterization in α-Fe: comparison between experiments and modeling. J Nucl Mater, 2002, 307-311: 871 doi: 10.1016/S0022-3115(02)01158-3 [25] Marian J, Wirth B D, Perlado J M. Mechanism of formation and growth of 〈100〉 interstitial loops in ferritic materials. Phys Rev Lett, 2002, 88(25): 255507-1 http://www.ncbi.nlm.nih.gov/pubmed/12097099 [26] Masters B C. Dislocation loops in irradiated iron. Philos Mag, 1965, 11(113): 881 doi: 10.1080/14786436508223952 [27] Arakawa K, Hatanaka M, Kuramoto E, et al. Changes in the Burgers vector of perfect dislocation loops without contact with the external dislocations. Phys Rev Lett, 2006, 96(12): 125506-1 http://www.ncbi.nlm.nih.gov/pubmed/16605927 [28] Yao Z, Jenkins M L, Hernández-Mayoral M, et al. The temperature dependence of heavy-ion damage in iron: a microstructural transition at elevated temperatures. Philos Mag, 2010, 90(35-36): 4623 doi: 10.1080/14786430903430981 [29] Porollo S I, Dvoriashin A M, Vorobyev A N, et al. The microstructure and tensile properties of Fe-Cr alloys after neutron irradiation at 400 ℃ to 5.5-7.1 dpa. J Nucl Mater, 1998, 256(2-3): 247 doi: 10.1016/S0022-3115(98)00043-9 [30] Xu S, Yao Z, Jenkins M L. TEM characterisation of heavy-ion irradiation damage in Fe-Cr alloys. J Nucl Mater, 2009, 386-388: 161 doi: 10.1016/j.jnucmat.2008.12.078 -