Effect of ultrasonic outfield on solidification rules of ZL205A aluminum alloy under different temperature-control states
-
摘要: 采用不同的超聲外場處理熔體工藝, 研究了其對鑄錠質量的作用機理與改善效果. 針對保溫(750℃)和空冷(從750℃空冷7 min 10 s至約650℃)兩種不同溫控狀態下的ZL205A鋁合金熔體, 分別進行相同參數的超聲場處理, 研究超聲場對凝固組織的影響規律, 并利用力學拉伸實驗進行驗證. 研究結果表明: 在保溫狀態下對熔體施加超聲處理, 具有較好的除氣與改善第二相組織分布的效果; 在空冷狀態下施加超聲處理則可以消除集中縮孔, 顯著細化晶粒; 當在保溫和空冷條件下全程采用超聲處理, 鑄錠內部質量的改善效果最佳. 力學性能的測試結果與鑄錠凝固組織的變化規律具有一致性, 驗證了上述結論. 綜上, 對不同溫控狀態下的熔體施加超聲處理, 對熔體凝固過程的影響不同, 對鑄錠內部質量的改善效果也各有側重.Abstract: Since the development of the aviation industry, improving the flight performance and reducing the weight of aircrafts has always been the goal pursued by aviation designers. Therefore, it becomes increasingly important to develop a new alloy material with high hardness, high strength, and light weight. To obtain excellent mechanical properties and good corrosion resistance, a new kind of alloy material, ZL205A alloy, was developed by the Beijing Institute of Aerial Materials (BAM) in the 1960s. Owing to its favorable mechanical properties and excellent corrosion resistance, ZL205A alloy has been well applied in the aviation industry. However, this kind of Al alloy still possesses some undesirable solidification defects: shrinkage, porosities, coarsening grains, and solute segregation. Ultrasonic melt treatment (UST) provides a means to eliminate or modify these defects. In the present work, the effects of UST on ZL205A alloy were investigated for two conditions, i.e., before casting and during solidification in ambient environment. Then, the effects of ultrasonication on the as-cast microstructures and the tensile properties were accordingly characterized and analyzed. For the case in which UST was only introduced before casting (holding temperature at 750℃), degassing and the distribution of secondary phases were modified. For the case in which UST was only introduced when cooling from 750℃ for 7 min 10 s to about 650℃, grain refinement and reduced porosities were generated. When UST was continuously employed for both conditions, the above properties were further improved compared with those of ingots without ultrasonic treatment. The mechanical tensile test results show that the improvement of the ingot internal structure can improve the ingot mechanical tensile properties, which proves the correctness of the above research results. Thus, UST carried out at two different conditions induced different regulatory functions and influencing mechanisms. This study shows that the UST of ZL205A aluminum alloy in different melt states has different emphases on improving the internal structure of the ingot.
-
Key words:
- ultrasonic treatment /
- ZL205A aluminum alloy /
- shrinkage performance /
- solidification structure /
- melt
-
圖 6 鑄錠組織微觀形貌及第二相組織占比圖. (a) 1#鑄錠; (b) 2#鑄錠; (c) 3#鑄錠; (d) 4#鑄錠; (e) 第二相組織占全圖面積比例柱狀圖
Figure 6. Micromorphology of ingot structure and proportion of second phase structure area: (a) 1# ingot; (b) 2# ingot; (c) 3# ingot; (d) 4# ingot; (e) second phase organization accounts for the total area ratio of the histogram
圖 7 普通共晶組織和粗大共晶組織掃描電鏡形貌和能譜圖. (a) 普通共晶組織; (b) 普通共晶組織能譜; (c)粗大共晶組織; (d) 粗大共晶組織能譜
Figure 7. SEM morphology and EDS spectra of common second-phase and coarse copolymer structures: (a) ordinary eutectic structure; (b) EDS spectrum of common eutectic structure; (c) coarse eutectic structure; (d) gross eutectic EDS spectrum
表 1 實驗用ZL205A鋁合金材料成分(質量分數)
Table 1. Aluminum alloy composition of ZL205A in experiment ?
% Cu Mn Ti Cd V Zr Zn Al 4.9 0.48 0.2 0.19 0.12 0.08 0.08 余量 表 2 鑄錠處理工藝對照表
Table 2. Comparison of experimental samples
鑄錠編號 超聲預處理 空冷超聲處理 1# 2# 時長20 min 3# 時長6 min 4# 時長20 min 時長6 min 259luxu-164 -
參考文獻
[1] Zheng L S. Casting Alloy and Smelting. Xian: Northwestern Polytechnical University Press, 1994鄭來蘇. 鑄造合金及其熔煉. 西安: 西北工業大學出版社, 1994 [2] Wang Y, Wu S P, Xue X, et al. Formation mechanism and criterion of linear segregation in ZL205A alloy. Trans Nonferrous Met Soc China, 2014, 24(11): 3632 doi: 10.1016/S1003-6326(14)63508-1 [3] Xian F C, Hao Q T, Fan L. Formation mechanism of massive segregation of ZL205A alloy. Rare Met Mater Eng, 2014, 43(4): 941 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201404035.htm賢福超, 郝啟堂, 范理. ZL205A合金塊狀偏析形成機理. 稀有金屬材料與工程, 2014, 43(4): 941 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE201404035.htm [4] Fan L, Hao Q T, Xian F C. Element segregation behavior of aluminum-copper alloy ZL205A. China Foundry, 2014, 11(6): 510 http://www.cnki.com.cn/Article/CJFDTotal-ZZAF201406008.htm [5] Lin C, Zhang H, Bi L, et al. Research status of casting defects of cast Al-Cu alloys. Mater Rev, 2016, 30(11): 143 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201621022.htm林超, 張鴻, 畢亮, 等. 鑄造Al-Cu合金凝固缺陷研究現狀. 材料導報, 2016, 30(11): 143 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201621022.htm [6] Liu Z W, Li Y, Wang N. Research on micro-porosity of ZL205A aluminum alloy casting. Light Alloy Fabric Technol, 2013, 41(7): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ201307006.htm劉志偉, 李怡, 王寧. ZL205A鋁合金鑄件顯微疏松研究. 輕合金加工技術, 2013, 41(7): 18 https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ201307006.htm [7] Cao F, Jiang R P, Li X Q, et al. Effect of ultrasonic pretreatment on microstructures of ZL205A aluminum alloy casting. J Cent South Univ Sci Technol, 2018, 49(1): 31 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201801005.htm曹飛, 蔣日鵬, 李曉謙, 等. 超聲預處理對ZL205A鋁合金鑄件凝固組織的影響. 中南大學學報: 自然科學版, 2018, 49(1): 31 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201801005.htm [8] Wang F, Eskin D, Mi J W, et al. A refining mechanism of primary Al3Ti intermetallic particles by ultrasonic treatment in the liquid state. Acta Mater, 2016, 116: 354 doi: 10.1016/j.actamat.2016.06.056 [9] Jiang R P, Li X Q, Li K Y, et al. Effect of ultrasonic on heat transfer and microstructure formation of aluminum alloy during solidification and its mechanism. J Cent South Univ Sci Technol, 2012, 43(10): 3807 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201210010.htm蔣日鵬, 李曉謙, 李開燁, 等. 超聲對鋁合金凝固傳熱與組織形成的影響與作用機制. 中南大學學報: 自然科學版, 2012, 43(10): 3807 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201210010.htm [10] Zocchi M L. Ultrasonic assisted lipoplasty. Technical refinements and clinical evaluations. Clin Plast Surg, 1996, 23(4): 575 doi: 10.1016/S0094-1298(20)32557-8 [11] Riedler M, Wei J, Liu Y C. Formation of shrinkage porosity during solidification of steel: numerical simulation and experimental validation. Iron Steel Transl Collect, 2016(2): 16Riedler M, 韋菁, 劉友存. 鋼凝固期間縮孔形成的數值模擬與試驗驗證. 鋼鐵譯文集, 2016(2): 16 [12] Jiang R P, Li X Q, Liu R G, et al. Effects of power ultrasonic on grain refining mechanism and action area in pure aluminum. Spec Casting Nonferrous Alloys, 2008, 28(7): 560 doi: 10.3870/tzzz.2008.07.023蔣日鵬, 李曉謙, 劉榮光, 等. 功率超聲對純鋁的細晶機制及作用區域研究. 特種鑄造及有色合金, 2008, 28(7): 560 doi: 10.3870/tzzz.2008.07.023 [13] Dai B Y. Metal Liquid Forming Principle. Beijing: National Defense Industry Press, 2010戴斌煜. 金屬液態成型原理. 北京: 國防工業出版社, 2010 [14] Zhang H Y, Zhang Z Z, Wang Y, et al. Fluid Mechanics. 2nd Ed. Beijing. Science Press, 2014張鴻雁, 張志政, 王元, 等. 流體力學. 2版. 北京: 科學出版社, 2014 [15] Chen W Z. Acoustic Cavitation Physics. Beijing. Science Press, 2014陳偉中. 聲空化物理. 北京: 科學出版社, 2014 [16] Tian R Z. Casting Aluminum Alloys. Changsha: Central South University Press, 2006田榮璋. 鑄造鋁合金. 長沙: 中南大學出版社, 2006 [17] Li R Q, Li X Q, Chen P H, et al. Effect rules and function mechanism of ultrasonic cavitation on solidification microstructure of large size high-strength aluminum alloy with hot top casting. J Cent South Univ Sci Technol, 2016, 47(10): 3354 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201610010.htm李瑞卿, 李曉謙, 陳平虎, 等. 超聲空化對大規格高強鋁合金熱頂鑄造凝固組織的影響及作用機理. 中南大學學報: 自然科學版, 2016, 47(10): 3354 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201610010.htm [18] Zhang Y, Li F L, Luo Z, et al. Effect of applied pressure and ultrasonic vibration on microstructure and microhardness of Al-5.0Cu alloy. Trans Nonferrous Met Soc China, 2016, 26(9): 2296 doi: 10.1016/S1003-6326(16)64348-0 [19] Zhang R S, Wang H, Tian M, et al. Pressureless reaction sintering and hot isostatic pressing of transparent MgAlON ceramic with high strength. Ceram Int, 2018, 44(14): 17383 doi: 10.1016/j.ceramint.2018.06.203 -