<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

玄武巖三維細觀孔隙模型重構與直接拉伸數值試驗

郎穎嫻 梁正召 董卓

郎穎嫻, 梁正召, 董卓. 玄武巖三維細觀孔隙模型重構與直接拉伸數值試驗[J]. 工程科學學報, 2019, 41(8): 997-1006. doi: 10.13374/j.issn2095-9389.2019.08.005
引用本文: 郎穎嫻, 梁正召, 董卓. 玄武巖三維細觀孔隙模型重構與直接拉伸數值試驗[J]. 工程科學學報, 2019, 41(8): 997-1006. doi: 10.13374/j.issn2095-9389.2019.08.005
LANG Ying-xian, LIANG Zheng-zhao, DONG Zhuo. Three-dimensional microscopic model reconstruction of basalt and numerical direct tension tests[J]. Chinese Journal of Engineering, 2019, 41(8): 997-1006. doi: 10.13374/j.issn2095-9389.2019.08.005
Citation: LANG Ying-xian, LIANG Zheng-zhao, DONG Zhuo. Three-dimensional microscopic model reconstruction of basalt and numerical direct tension tests[J]. Chinese Journal of Engineering, 2019, 41(8): 997-1006. doi: 10.13374/j.issn2095-9389.2019.08.005

玄武巖三維細觀孔隙模型重構與直接拉伸數值試驗

doi: 10.13374/j.issn2095-9389.2019.08.005
基金項目: 

國家重點研發計劃資助項目 2016YFB0201000

國家自然科學基金資助項目 51779031

國家自然科學基金資助項目 51878190

詳細信息
    通訊作者:

    梁正召, E-mail: LiangZZ@dlut.edu.cn

  • 中圖分類號: TG142.71

Three-dimensional microscopic model reconstruction of basalt and numerical direct tension tests

More Information
  • 摘要: 由于巖石材料的不透明性和多孔隙特性, 通過傳統的物理試驗或數值模擬很難真實體現其內部三維細觀結構. 本文基于CT掃描技術、邊緣檢測算法、濾波算法、三維點陣映射與重構算法, 構建了可以表征玄武巖試樣內部孔隙結構的三維細觀非均勻數值模型. 結合并行計算進行直接拉伸數值試驗, 研究了內部孔隙結構特征對試樣破壞機制及抗拉強度的影響. 研究結果表明: 加載初期在試樣孔隙處產生初始裂紋, 隨著荷載的增加初始裂紋逐漸沿橫向擴展最終形成宏觀拉伸破壞裂紋, 并且孔隙含量和分布位置對試樣拉伸斷裂的位置具有重要影響. 隨著孔隙率增高, 試樣破壞過程中的聲發射數目和能量逐漸減小. 拉伸破壞模式呈現脆性破壞特征, 同時孔隙的存在削弱了試樣的抗拉強度.

     

  • 圖  1  玄武巖試樣

    Figure  1.  Basalt samples

    圖  2  CT掃描圖像預處理. (a) CT圖像; (b) 二值化處理; (c) 5×5濾波窗口; (d) 10×10濾波窗口

    Figure  2.  CT images of sample 1 after processing: (a) CT images; (b) binarization processing; (c) 5×5 filtering window; (d) 10×10 filtering window

    圖  3  掃描線上灰度變化曲線

    Figure  3.  Gray values along the scanned line processing

    圖  4  細觀圖像轉化為矢量化結構

    Figure  4.  Single-layer grid model based on a structural characterization

    圖  5  試樣1實體模型與數值模型

    Figure  5.  Physical and numerical models of sample 1

    圖  6  玄武巖試樣不同視角下拉伸斷裂形態. (a) 試樣1 (Step=18); (b) 試樣2 (Step=12); (c) 試樣3 (Step=15); (d) 試樣4 (Step=15); (e) 試樣5 (Step=15)

    Figure  6.  Crack morphologies of basalt specimens under direct tensile stress: (a) sample 1 (Step=18); (b) sample 2 (Step=12); (c) sample 3 (Step=15); (d) sample 4 (Step=15); (e) sample 5 (Step=15)

    圖  7  試樣1裂紋擴展圖. (a) Step = 1; (b) Step = 8-(7); (c) Step = 8-(15); (d) Step = 15; (e) 內部切片圖

    Figure  7.  Crack propagation process in sample 1: (a) Step = 1; (b) Step = 8-(7); (c) Step = 8-(15); (d) Step = 15; (e) internal slice figure

    圖  8  裂紋擴展過程和單元損傷圖. (a) 試樣2裂紋擴展圖; (b) 試樣3裂紋擴展圖及單元損傷圖; (c) 試樣4裂紋擴展圖; (d) 試樣5單元損傷圖

    Figure  8.  Images showing crack propagation process and element damage: (a) the crack propagation of sample 2; (b) the crack propagation and element damage of sample 3; (c) the crack propagation of sample 4; (d) the element damage of sample 5

    圖  9  聲發射數目

    Figure  9.  AE counts

    圖  10  累積聲發射能量

    Figure  10.  Accumulative AE energy values

    圖  11  應力-應變曲線

    Figure  11.  Stress-strain curves

    圖  12  抗拉強度與孔隙率的關系

    Figure  12.  Relationship between tensile strength and porosity

    表  1  模型參數

    Table  1.   Mechanical parameters of the numerical model

    材料 彈性模量/GPa 泊松比 摩擦角/(°) 抗壓強度/MPa
    玄武巖 26 0.26 38 92
    下載: 導出CSV

    表  2  模型計算孔隙率

    Table  2.   Porosities calculated by the numerical model

    模型序號 計算孔隙率/%
    試樣1 7.78
    試樣2 8.52
    試樣3 25.75
    試樣4 13.95
    試樣5 10.43
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Tao L B, Xia C C, He Z M. Experimental studies on the total course stress-strain curves of granite specimens under tensile condition. J Tongji Univ Nat Sci, 1997, 25(1): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ199701006.htm

    陶履彬, 夏才初, 何之民. 花崗巖拉伸全過程變形特性的試驗研究. 同濟大學學報: 自然科學版, 1997, 25(1): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ199701006.htm
    [2] Dai G F, Xia C C, Yan C. Testing study on deformation behaviour of rock in Longtan hydropower project under tensile condition. Chin J Rock Mech Eng, 2005, 24(3): 384 doi: 10.3321/j.issn:1000-6915.2005.03.004

    代高飛, 夏才初, 晏成. 龍灘工程巖石試件在拉伸條件下的變形特性試驗研究. 巖石力學與工程學報, 2005, 24(3): 384 doi: 10.3321/j.issn:1000-6915.2005.03.004
    [3] Sundaram P N, Corrales J M. Brazilian tensile strength of rocks with different elastic properties in tension and compression. Int J Rock Mech Min Sci Geomech Abstracts, 1980, 17(2): 131 doi: 10.1016/0148-9062(80)90265-X
    [4] Zhang S H, Miao X X, Zhao H Y. Influence of test methods on measured results of rock tensile strength. J China Univ Min Technol, 1999, 28(3): 243 doi: 10.3321/j.issn:1000-1964.1999.03.011

    張少華, 繆協興, 趙海云. 試驗方法對巖石抗拉強度測定的影響. 中國礦業大學學報, 1999, 28(3): 243 doi: 10.3321/j.issn:1000-1964.1999.03.011
    [5] Dou Q F, Yue S, Dai G F. Comparative study on direct tensile test and splitting test. Underground Space, 2004, 24(2): 178 doi: 10.3969/j.issn.1673-0836.2004.02.009

    竇慶峰, 岳順, 代高飛. 巖石直接拉伸試驗與劈裂試驗的對比研究. 地下空間, 2004, 24(2): 178 doi: 10.3969/j.issn.1673-0836.2004.02.009
    [6] Zhang S H, Zhao H Y. The test method and its characteristics of rock tensile strength. Ground Pressure Strata Control, 1994(3): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL403.018.htm

    張少華, 趙海云. 巖石抗拉強度試驗方法及其特征. 礦山壓力與頂板管理, 1994(3): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL403.018.htm
    [7] Nova R, Zaninetti A. An investigation into the tensile behaviour of schistose rock. Int J Rock Mech Min Sci Geomech Abstracts, 1990, 27(4): 231 http://www.sciencedirect.com/science/article/pii/0148906290905268
    [8] Okubo S, Fukui K. Complete stress-strain curves for various rock types in uniaxial tension. Int J Rock Mech Min Sci Geomech Abstracts, 1996, 33(6): 549 doi: 10.1016/0148-9062(96)00024-1
    [9] Li D Y, Li X B, Li C C. Experimental studies of mechanical properties of two rocks under direct compression and tensile. Chin J Rock Mech Eng, 2010, 29(3): 624 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003026.htm

    李地元, 李夕兵, Li C C. 2種巖石直接拉壓作用下的力學性能試驗研究. 巖石力學與工程學報, 2010, 29(3): 624 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003026.htm
    [10] Wong L N Y, Einstein H H. Crack coalescence in molded gypsum and Carrara marble: Part 1. Macroscopic observations and interpretation. Rock Mech Rock Eng, 2009, 42(3): 475 doi: 10.1007/s00603-008-0002-4
    [11] Baud P, Wong T F, Zhu W. Effects of porosity and crack density on the compressive strength of rocks. Int J Rock Mech Min Sci, 2014, 67: 202 doi: 10.1016/j.ijrmms.2013.08.031
    [12] Griffiths L, Heap M J, Xu T, et al. The influence of pore geometry and orientation on the strength and stiffness of porous rock. J Struct Geol, 2017, 96: 149 doi: 10.1016/j.jsg.2017.02.006
    [13] Bubeck A, Walker R J, Healy D, et al. Pore geometry as a control on rock strength. Earth Planet Sci Lett, 2017, 457: 38 doi: 10.1016/j.epsl.2016.09.050
    [14] Schaefer L N, Kendrick J E, Oommen T, et al. Geomechanical rock properties of a basaltic volcano. Front Earth Sci, 2015, 3: 29 http://adsabs.harvard.edu/abs/2015FrEaS...3...29S
    [15] Al-Harthi A A, Al-Amri R M, Shehata W M. The porosity and engineering properties of vesicular basalt in Saudi Arabia. Eng Geol, 1999, 54(3-4): 313 doi: 10.1016/S0013-7952(99)00050-2
    [16] ?anakc? H, Baykaso AgˇG2 lu A, Güllü H. Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming. Neural Comput Appl, 2009, 18(8): 1031 https://www.cnki.com.cn/Article/CJFDTOTAL-SJZY201705024.htm
    [17] Heap M J, Xu T, Chen C F. The influence of porosity and vesicle size on the brittle strength of volcanic rocks and magma. Bull Volcanology, 2014, 76(9): 856 doi: 10.1007/s00445-014-0856-0
    [18] Yu Q L, Yang S Q, Ranjith P G, et al. Numerical modeling of jointed rock under compressive loading using X-ray computerized tomography. Rock Mech Rock Eng, 2016, 49(3): 877 doi: 10.1007/s00603-015-0800-4
    [19] Ju Y, Yang Y M, Song Z D, et al. A statistical model for porous structure of rocks. Sci China Ser E Technol Sci, 2008, 51(11): 2040 doi: 10.1007/s11431-008-0111-z
    [20] Wang Z M, Kwan A K H, Chan H C. Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh. Comput Struct, 1999, 70(5): 533 doi: 10.1016/S0045-7949(98)00177-1
    [21] Yu Q L. Digital Image Processing Based Numerical Methods for Failure Process Analysis of Rocklike Materials [Dissertation]. Shenyang: Northeastern University, 2008

    于慶磊. 基于數字圖像的巖石類材料破裂過程分析方法研究[學位論文]. 沈陽: 東北大學, 2008
    [22] Zhao Y S, Meng Q R, Kang T H, et al. Micro-CT experimental technology and meso-investigation on thermal fracturing characteristics of granite. Chin J Rock Mech Eng, 2008, 27(1): 28 doi: 10.3321/j.issn:1000-6915.2008.01.005

    趙陽升, 孟巧榮, 康天合, 等. 顯微CT試驗技術與花崗巖熱破裂特征的細觀研究. 巖石力學與工程學報, 2008, 27(1): 28 doi: 10.3321/j.issn:1000-6915.2008.01.005
    [23] Liang Z Z, Tang C A, Li H X, et al. Numerical simulation of 3-d failure process in heterogeneous rocks. Int J Rock Mech Min Sci, 2004, 41(Suppl 1): 323 http://www.sciencedirect.com/science/article/pii/S136516090300176X
    [24] Liang Z Z, Xing H, Wang S Y, et al. A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw. Comput Geotech, 2012, 45: 19 doi: 10.1016/j.compgeo.2012.04.011
    [25] Yu X B, Xie Q, Li X Y, et al. Acoustic emission of rocks under direct tensile, Brazilian and uniaxial compression. Chin J Rock Mech Eng, 2007, 26(1): 137 doi: 10.3321/j.issn:1000-6915.2007.01.019

    余賢斌, 謝強, 李心一, 等. 直接拉伸、劈裂及單軸壓縮試驗下巖石的聲發射特性. 巖石力學與工程學報, 2007, 26(1): 137 doi: 10.3321/j.issn:1000-6915.2007.01.019
  • 加載中
圖(12) / 表(2)
計量
  • 文章訪問數:  937
  • HTML全文瀏覽量:  359
  • PDF下載量:  27
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-07-18
  • 刊出日期:  2019-08-01

目錄

    /

    返回文章
    返回