Three-dimensional microscopic model reconstruction of basalt and numerical direct tension tests
-
摘要: 由于巖石材料的不透明性和多孔隙特性, 通過傳統的物理試驗或數值模擬很難真實體現其內部三維細觀結構. 本文基于CT掃描技術、邊緣檢測算法、濾波算法、三維點陣映射與重構算法, 構建了可以表征玄武巖試樣內部孔隙結構的三維細觀非均勻數值模型. 結合并行計算進行直接拉伸數值試驗, 研究了內部孔隙結構特征對試樣破壞機制及抗拉強度的影響. 研究結果表明: 加載初期在試樣孔隙處產生初始裂紋, 隨著荷載的增加初始裂紋逐漸沿橫向擴展最終形成宏觀拉伸破壞裂紋, 并且孔隙含量和分布位置對試樣拉伸斷裂的位置具有重要影響. 隨著孔隙率增高, 試樣破壞過程中的聲發射數目和能量逐漸減小. 拉伸破壞模式呈現脆性破壞特征, 同時孔隙的存在削弱了試樣的抗拉強度.Abstract: The presence of discontinuities and randomly distributed pores in basalt specimens greatly affects their engineering properties, such as the failure mechanism and strength. Therefore, investigating the mechanical and fracture behaviors of basalt affected by the pre-existing defects is important for underground engineering, mining engineering, foundation engineering, and rock breaking and blasting. Laboratory tests have been widely used to research the failure mechanism of rocks under different conditions. However, it is difficult to clearly show the internal or spatial crack evolution during rock failure process in laboratory tests. Recently, X-ray computerized tomography (CT) and numerical tests have been used to detect the internal microstructures of rock specimens and to study their failure mechanism and strength. In addition, tensile strength is an important mechanical property of rock material. The direct tensile test is theoretically the simplest and most effective method for understanding the tensile behavior of rock. However, it is difficult to carry out in practical condition, because the sample processing and test procedures are complicated, also the experimental process of each sample cannot be repeated and has limited results. Due to the opacity of rocks, it is difficult to examine the three-dimensional internal structures of rocks through traditional physical and numerical experiments. In the present research, a 3D numerical method was proposed for simulating porous rock failure based on CT technology, the edge detection algorithm, filtering algorithm, and 3D matrix mapping method. Direct tensile tests were carried out based on the parallel finite element method to study the effect of the porosity and pore distribution on the failure mechanism and tensile strength. The results indicate that initial cracks at the beginning of loading usually occur in pores, and then with the raising of load the initial cracks propagate along the direction perpendicular to the loading direction and eventually form macroscopic tensile cracks. The porosity and pore distribution have significant influences on the position of macroscopic tensile cracks. The acoustic emission (AE) event numbers and the accumulative AE energy are gradually decreased as the porosity increased. In addition, the brittle failure primarily determines the tensile failure mode and the presence of pores weakens the tensile strength of basalt samples.
-
Key words:
- basalt /
- pore /
- CT /
- digital image /
- finite element method
-
圖 6 玄武巖試樣不同視角下拉伸斷裂形態. (a) 試樣1 (Step=18); (b) 試樣2 (Step=12); (c) 試樣3 (Step=15); (d) 試樣4 (Step=15); (e) 試樣5 (Step=15)
Figure 6. Crack morphologies of basalt specimens under direct tensile stress: (a) sample 1 (Step=18); (b) sample 2 (Step=12); (c) sample 3 (Step=15); (d) sample 4 (Step=15); (e) sample 5 (Step=15)
圖 8 裂紋擴展過程和單元損傷圖. (a) 試樣2裂紋擴展圖; (b) 試樣3裂紋擴展圖及單元損傷圖; (c) 試樣4裂紋擴展圖; (d) 試樣5單元損傷圖
Figure 8. Images showing crack propagation process and element damage: (a) the crack propagation of sample 2; (b) the crack propagation and element damage of sample 3; (c) the crack propagation of sample 4; (d) the element damage of sample 5
表 1 模型參數
Table 1. Mechanical parameters of the numerical model
材料 彈性模量/GPa 泊松比 摩擦角/(°) 抗壓強度/MPa 玄武巖 26 0.26 38 92 表 2 模型計算孔隙率
Table 2. Porosities calculated by the numerical model
模型序號 計算孔隙率/% 試樣1 7.78 試樣2 8.52 試樣3 25.75 試樣4 13.95 試樣5 10.43 259luxu-164 -
參考文獻
[1] Tao L B, Xia C C, He Z M. Experimental studies on the total course stress-strain curves of granite specimens under tensile condition. J Tongji Univ Nat Sci, 1997, 25(1): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ199701006.htm陶履彬, 夏才初, 何之民. 花崗巖拉伸全過程變形特性的試驗研究. 同濟大學學報: 自然科學版, 1997, 25(1): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ199701006.htm [2] Dai G F, Xia C C, Yan C. Testing study on deformation behaviour of rock in Longtan hydropower project under tensile condition. Chin J Rock Mech Eng, 2005, 24(3): 384 doi: 10.3321/j.issn:1000-6915.2005.03.004代高飛, 夏才初, 晏成. 龍灘工程巖石試件在拉伸條件下的變形特性試驗研究. 巖石力學與工程學報, 2005, 24(3): 384 doi: 10.3321/j.issn:1000-6915.2005.03.004 [3] Sundaram P N, Corrales J M. Brazilian tensile strength of rocks with different elastic properties in tension and compression. Int J Rock Mech Min Sci Geomech Abstracts, 1980, 17(2): 131 doi: 10.1016/0148-9062(80)90265-X [4] Zhang S H, Miao X X, Zhao H Y. Influence of test methods on measured results of rock tensile strength. J China Univ Min Technol, 1999, 28(3): 243 doi: 10.3321/j.issn:1000-1964.1999.03.011張少華, 繆協興, 趙海云. 試驗方法對巖石抗拉強度測定的影響. 中國礦業大學學報, 1999, 28(3): 243 doi: 10.3321/j.issn:1000-1964.1999.03.011 [5] Dou Q F, Yue S, Dai G F. Comparative study on direct tensile test and splitting test. Underground Space, 2004, 24(2): 178 doi: 10.3969/j.issn.1673-0836.2004.02.009竇慶峰, 岳順, 代高飛. 巖石直接拉伸試驗與劈裂試驗的對比研究. 地下空間, 2004, 24(2): 178 doi: 10.3969/j.issn.1673-0836.2004.02.009 [6] Zhang S H, Zhao H Y. The test method and its characteristics of rock tensile strength. Ground Pressure Strata Control, 1994(3): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL403.018.htm張少華, 趙海云. 巖石抗拉強度試驗方法及其特征. 礦山壓力與頂板管理, 1994(3): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL403.018.htm [7] Nova R, Zaninetti A. An investigation into the tensile behaviour of schistose rock. Int J Rock Mech Min Sci Geomech Abstracts, 1990, 27(4): 231 http://www.sciencedirect.com/science/article/pii/0148906290905268 [8] Okubo S, Fukui K. Complete stress-strain curves for various rock types in uniaxial tension. Int J Rock Mech Min Sci Geomech Abstracts, 1996, 33(6): 549 doi: 10.1016/0148-9062(96)00024-1 [9] Li D Y, Li X B, Li C C. Experimental studies of mechanical properties of two rocks under direct compression and tensile. Chin J Rock Mech Eng, 2010, 29(3): 624 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003026.htm李地元, 李夕兵, Li C C. 2種巖石直接拉壓作用下的力學性能試驗研究. 巖石力學與工程學報, 2010, 29(3): 624 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003026.htm [10] Wong L N Y, Einstein H H. Crack coalescence in molded gypsum and Carrara marble: Part 1. Macroscopic observations and interpretation. Rock Mech Rock Eng, 2009, 42(3): 475 doi: 10.1007/s00603-008-0002-4 [11] Baud P, Wong T F, Zhu W. Effects of porosity and crack density on the compressive strength of rocks. Int J Rock Mech Min Sci, 2014, 67: 202 doi: 10.1016/j.ijrmms.2013.08.031 [12] Griffiths L, Heap M J, Xu T, et al. The influence of pore geometry and orientation on the strength and stiffness of porous rock. J Struct Geol, 2017, 96: 149 doi: 10.1016/j.jsg.2017.02.006 [13] Bubeck A, Walker R J, Healy D, et al. Pore geometry as a control on rock strength. Earth Planet Sci Lett, 2017, 457: 38 doi: 10.1016/j.epsl.2016.09.050 [14] Schaefer L N, Kendrick J E, Oommen T, et al. Geomechanical rock properties of a basaltic volcano. Front Earth Sci, 2015, 3: 29 http://adsabs.harvard.edu/abs/2015FrEaS...3...29S [15] Al-Harthi A A, Al-Amri R M, Shehata W M. The porosity and engineering properties of vesicular basalt in Saudi Arabia. Eng Geol, 1999, 54(3-4): 313 doi: 10.1016/S0013-7952(99)00050-2 [16] ?anakc? H, Baykaso AgˇG2 lu A, Güllü H. Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming. Neural Comput Appl, 2009, 18(8): 1031 https://www.cnki.com.cn/Article/CJFDTOTAL-SJZY201705024.htm [17] Heap M J, Xu T, Chen C F. The influence of porosity and vesicle size on the brittle strength of volcanic rocks and magma. Bull Volcanology, 2014, 76(9): 856 doi: 10.1007/s00445-014-0856-0 [18] Yu Q L, Yang S Q, Ranjith P G, et al. Numerical modeling of jointed rock under compressive loading using X-ray computerized tomography. Rock Mech Rock Eng, 2016, 49(3): 877 doi: 10.1007/s00603-015-0800-4 [19] Ju Y, Yang Y M, Song Z D, et al. A statistical model for porous structure of rocks. Sci China Ser E Technol Sci, 2008, 51(11): 2040 doi: 10.1007/s11431-008-0111-z [20] Wang Z M, Kwan A K H, Chan H C. Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh. Comput Struct, 1999, 70(5): 533 doi: 10.1016/S0045-7949(98)00177-1 [21] Yu Q L. Digital Image Processing Based Numerical Methods for Failure Process Analysis of Rocklike Materials [Dissertation]. Shenyang: Northeastern University, 2008于慶磊. 基于數字圖像的巖石類材料破裂過程分析方法研究[學位論文]. 沈陽: 東北大學, 2008 [22] Zhao Y S, Meng Q R, Kang T H, et al. Micro-CT experimental technology and meso-investigation on thermal fracturing characteristics of granite. Chin J Rock Mech Eng, 2008, 27(1): 28 doi: 10.3321/j.issn:1000-6915.2008.01.005趙陽升, 孟巧榮, 康天合, 等. 顯微CT試驗技術與花崗巖熱破裂特征的細觀研究. 巖石力學與工程學報, 2008, 27(1): 28 doi: 10.3321/j.issn:1000-6915.2008.01.005 [23] Liang Z Z, Tang C A, Li H X, et al. Numerical simulation of 3-d failure process in heterogeneous rocks. Int J Rock Mech Min Sci, 2004, 41(Suppl 1): 323 http://www.sciencedirect.com/science/article/pii/S136516090300176X [24] Liang Z Z, Xing H, Wang S Y, et al. A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw. Comput Geotech, 2012, 45: 19 doi: 10.1016/j.compgeo.2012.04.011 [25] Yu X B, Xie Q, Li X Y, et al. Acoustic emission of rocks under direct tensile, Brazilian and uniaxial compression. Chin J Rock Mech Eng, 2007, 26(1): 137 doi: 10.3321/j.issn:1000-6915.2007.01.019余賢斌, 謝強, 李心一, 等. 直接拉伸、劈裂及單軸壓縮試驗下巖石的聲發射特性. 巖石力學與工程學報, 2007, 26(1): 137 doi: 10.3321/j.issn:1000-6915.2007.01.019 -