<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

剪切濃密床層孔隙網絡模型與導水通道演化

焦華喆 王樹飛 吳愛祥 沈慧明 楊亦軒 阮竹恩

焦華喆, 王樹飛, 吳愛祥, 沈慧明, 楊亦軒, 阮竹恩. 剪切濃密床層孔隙網絡模型與導水通道演化[J]. 工程科學學報, 2019, 41(8): 987-996. doi: 10.13374/j.issn2095-9389.2019.08.004
引用本文: 焦華喆, 王樹飛, 吳愛祥, 沈慧明, 楊亦軒, 阮竹恩. 剪切濃密床層孔隙網絡模型與導水通道演化[J]. 工程科學學報, 2019, 41(8): 987-996. doi: 10.13374/j.issn2095-9389.2019.08.004
JIAO Hua-zhe, WANG Shu-fei, WU Ai-xiang, SHEN Hui-ming, YANG Yi-xuan, RUAN Zhu-en. Pore network model of tailings thickener bed and water drainage channel evolution under the shearing effect[J]. Chinese Journal of Engineering, 2019, 41(8): 987-996. doi: 10.13374/j.issn2095-9389.2019.08.004
Citation: JIAO Hua-zhe, WANG Shu-fei, WU Ai-xiang, SHEN Hui-ming, YANG Yi-xuan, RUAN Zhu-en. Pore network model of tailings thickener bed and water drainage channel evolution under the shearing effect[J]. Chinese Journal of Engineering, 2019, 41(8): 987-996. doi: 10.13374/j.issn2095-9389.2019.08.004

剪切濃密床層孔隙網絡模型與導水通道演化

doi: 10.13374/j.issn2095-9389.2019.08.004
基金項目: 

國家自然科學基金資助項目 51704094

國家自然科學基金資助項目 51834001

國家自然科學基金資助項目 51574013

河南省高等學校重點科研項目 16A440003

國家安全生產重大事故防治關鍵技術項目 henan-0005-2016AQ

詳細信息
    通訊作者:

    楊亦軒, E-mail: yangyixuan@hpu.edu.cn

  • 中圖分類號: TD853

Pore network model of tailings thickener bed and water drainage channel evolution under the shearing effect

More Information
  • 摘要: 剪切作用是膏體重力濃密制備的基礎要素, 本文研究了濃密床層孔隙和喉道的變化對導水通道的影響, 揭示了水分排出的來源與比例. 開展半工業實驗并結合計算機斷層掃描(CT)與孔隙網絡模型(PNM)提取床層微觀孔隙結構, 利用最大球搜索算法識別并分析剪切前后孔隙與喉道的演化規律. 結果表明, 添加轉速為2 r·min-1的剪切作用將尾砂底流濃度(即底流的固相質量分數)由55.8%提升到58.5%, 孔隙率由43.05%降低到36.59%, 孔隙率降低的比率為15%. 通過PNM技術將孔隙空間劃分為"球體"儲水孔隙與"棍體"喉道; 剪切后球體和棍體數量分別增加了16.5%和22%, 球體平均尺寸小幅下降, 球體半徑多集中在40~60 μm之間. 棍體平均半徑由9.83 μm降低至8.58 μm, 降低了12.7%, 棍體長度變化較小. 剪切作用下的球體配位數在5~10的部分從25.73%增加至44.58%, 配位明顯增多, 顆粒接觸緊密. 本文提出"球棍比"的概念用于孔隙結構的定量表征. 剪切后球體體積占比由14.14%降低至12.75%, 球體體積減少的比率達到9.83%;棍的體積由28.91%降低至23.84%, 棍體積減少的比率為17.54%. 球棍比由48.91%增加至53.48%, 球棍比提升的比率達到了9.34%, 與球體體積減小相比, 棍的體積減少的幅度更大, 導致球棍比上升. 本文從孔隙結構變化的角度揭示了全尾砂重力濃密剪切排水機理; 剪排水過程中主要排出的是喉道中的水分, 孔隙中的水分排出較少.

     

  • 圖  1  全尾砂粒度分布曲線

    Figure  1.  Grain size distribution curve of unclassified tailings

    圖  2  實驗裝置示意圖及樣品制備過程.(a) 半工業連續濃密實驗平臺; (b) 樣品制備過程

    Figure  2.  Schematic diagram of the experimental device and sample preparation process: (a)pilot-scale experimental platform of continuous thickening; (b) sample preparation process

    圖  3  未凍脹孔隙計算示意圖

    Figure  3.  Schematic diagram of the calculation of pores without frost heaving

    圖  4  孔隙網絡提取. (a) 圖像截取; (b) 中值濾波; (c) 圖像二值化; (d) 三維重構; (e) 連通孔隙劃分; (f) 孔隙網絡模型(PNM)建立

    Figure  4.  Pore network extraction: (a) image crop; (b) median filter; (c) binarization; (d) 3D reconstruction; (e) division of connected pores; (f) establishment of the pore network model (PNM)

    圖  5  孔隙-喉道結構示意圖

    Figure  5.  Schematic diagram of the pore-throat structure

    圖  6  膨脹搜索示意圖. (a) 側線, 6個方向; (b) 側線加對角線18個方向; (c) 側線、對角線加直徑線26個方向

    Figure  6.  Schematic diagram of the expansion search: (a) lateral line, 6 directions; (b) lateral line and diagonal, 18 directions; (c) lateral line, diagonal, and diameter line, 26 directions

    圖  7  最大球被多個球包含的示意圖

    Figure  7.  Schematic diagram of the maximum ball contained within multiple balls

    圖  8  PNM示意圖. (a) 剪切作用下的PNM; (b) 無剪切作用下的PNM

    Figure  8.  Schematic diagram of the PNM: (a) PNM with shearing; (b) PNM without shearing

    圖  9  有/無剪切作用下球體半徑對比

    Figure  9.  Comparison of ball radius with and without shearing

    圖  10  有/無剪切作用下棍體半徑對比與棍體長度對比. (a) 棍體半徑; (b) 棍體長度

    Figure  10.  Comparison of stick radius and stick length with and without shearing: (a) stick radius; (b) stick length

    圖  11  球體配位數對比

    Figure  11.  Comparison of sphere coordination numbers

    圖  12  剪切作用下PNM與導水通道結構演化示意圖. (a) PNM演化示意圖; (b) 導水通道結構演化示意圖

    Figure  12.  Schematic diagrams of the PNM and water drainage channel evolution with shearing: (a) schematic diagrams of the evolution of PNM; (b) schematic diagrams of water drainage channel evolution

    圖  13  有/無剪切作用下喉道變化示意圖. (a) 剪切作用下孔隙喉道示意圖; (b) 無剪切作用下孔隙喉道示意圖

    Figure  13.  Schematic diagrams of the evolution of throats with and without shearing: (a) schematic diagrams of throats with shearing; (b) schematic diagrams of throats without shearing

    表  1  有/無剪切作用下PNM參數對比

    Table  1.   Comparison of pore network model parameters with and without shearing

    試驗條件 模型尺寸/(mm×mm×mm) 孔隙率/% 孔隙數量 吼道數量
    無剪切 2×2×1 43.05 206 827
    有剪切 36.59 240 1009
    下載: 導出CSV

    表  2  不同濃度下的屈服應力與指數m

    Table  2.   Yield stress and index m under different concentrations

    料漿濃度(料漿固相質量分數)/% 屈服應力/Pa 指數m
    50 24.01 2.7296
    55 30.55 2.1391
    60 41.71 0.552
    65 75.62 0.3717
    70 129.65 1.2251
    75 214.93 1.0164
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201805001.htm

    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5): 517 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201805001.htm
    [2] Wang H J, Zhou X, Wu A X, et al. Mathematical model and factors of paste thickener rake torque. Chin J Eng, 2018, 40(6): 673 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201806004.htm

    王洪江, 周旭, 吳愛祥, 等. 膏體濃密機扭矩計算模型及其影響因素. 工程科學學報, 2018, 40(6): 673 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201806004.htm
    [3] Guo L J, Xu W Y, Shi C X. Application of the stockpile tailings cemented filling technology on abandoned cavity treatment. China Min Mag, 2014, 23(Suppl 2): 194 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2014S2046.htm

    郭利杰, 許文遠, 史采星. 堆存尾砂膠結充填處理廢棄采空區的應用實踐. 中國礦業, 2014, 23(增刊2): 194 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2014S2046.htm
    [4] Y?lmaz T, Ercikdi B, Deveci H. Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings. J Environ Manage, 2018, 222: 250 doi: 10.1016/j.jenvman.2018.05.075
    [5] Shan Z Y, Su Y S. Study on the broken depth of floor failure on the mining face with paste filling. J Henan Polytech Univ Nat Sci, 2012, 31(1): 35 doi: 10.3969/j.issn.1673-9787.2012.01.008

    單智勇, 蘇勇松. 膏體充填工作面底板破壞深度研究. 河南理工大學學報: 自然科學版, 2012, 31(1): 35 doi: 10.3969/j.issn.1673-9787.2012.01.008
    [6] Khaldoun A, Ouadif L, Baba K, et al. Valorization of mining waste and tailings through paste backfilling solution, Imiter operation, Morocco. Int J Min Sci Technol, 2016, 26(3): 511 doi: 10.1016/j.ijmst.2016.02.021
    [7] Yin S H, Shao Y J, Wu A X, et al. Association analysis of expansion crack development characteristics and uniaxial compressive strength property of sulphide-containing backfill. Chin J Eng, 2018, 40(1): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201801002.htm

    尹升華, 邵亞建, 吳愛祥, 等. 含硫充填體膨脹裂隙發育特性與單軸抗壓強度的關聯分析. 工程科學學報, 2018, 40(1): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201801002.htm
    [8] Cao S, Song W D, Yilmaz E. Influence of structural factors on uniaxial compressive strength of cemented tailings backfill. Constr Build Mater, 2018, 174: 190 doi: 10.1016/j.conbuildmat.2018.04.126
    [9] Cao S, Song W D, Xue G L, et al. Mechanical characteristics variation of stratified cemented tailing backfilling and its failure modes. J China Univ Min Technol, 2016, 45(4): 717 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201604009.htm

    曹帥, 宋衛東, 薛改利, 等. 分層尾砂膠結充填體力學特性變化規律及破壞模式. 中國礦業大學學報, 2016, 45(4): 717 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201604009.htm
    [10] Yang Z Q, Wang Y Q, Gao Q, et al. Test research on cemented filling body strength of mixed filling aggregate in Jinchuan Nickel mine. J Henan Polytech Univ Nat Sci, 2015, 34(2): 171 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201502007.htm

    楊志強, 王永前, 高謙, 等. 金川鎳礦混合充填集料膠結充填體強度試驗研究. 河南理工大學學報(自然科學版), 2015, 34(2): 171 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201502007.htm
    [11] Liu L, Zhu C, Chen G L, et al. Erosion mechanism of sulfur-bearing tailings in micro-scale. J Xi'an Univ Sci Technol, 2018, 38(4): 553 https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201804007.htm

    劉浪, 朱超, 陳國龍, 等. 微觀尺度下含硫尾砂膠結充填體侵蝕機理. 西安科技大學學報, 2018, 38(4): 553 https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201804007.htm
    [12] Sun W, Hou K P, Yang Z Q, et al. X-ray CT three-dimensional reconstruction and discrete element analysis of the cement paste backfill pore structure under uniaxial compression. Construction Building Mater, 2017, 138: 69 doi: 10.1016/j.conbuildmat.2017.01.088
    [13] Yang B H, Wu A X, Miao X X. 3D micropore structure evolution of ore particles based on image processing. Chin J Eng, 2016, 38(3): 328 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201603005.htm

    楊保華, 吳愛祥, 繆秀秀. 基于圖像處理的礦石顆粒三維微觀孔隙結構演化. 工程科學學報, 2016, 38(3): 328 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201603005.htm
    [14] Sun W, Wu A X, Hou K P, et al. Application of X-Ray CT technology in the pore structure study of subsidence area backfilling body. Rock Soil Mech, 2017, 38(12): 3635 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712032.htm

    孫偉, 吳愛祥, 侯克鵬, 等. 基于X-Ray CT試驗的塌陷區回填體孔隙結構研究. 巖土力學, 2017, 38(12): 3635 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712032.htm
    [15] Wu D, Fall M, Cai S J. Numerical modelling of thermally and hydraulically coupled processes in hydrating cemented tailings backfill columns. Int J Min Reclamation Environ, 2014, 28(3): 173 doi: 10.1080/17480930.2013.809194
    [16] Miao X X. Dual Pore-system Ore Aggregates Characterization and Leaching Behaviours Modelling [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    繆秀秀. 雙尺度孔隙結構礦堆精細表征及浸礦多場耦合模型研究[學位論文]. 北京: 北京科技大學, 2018
    [17] Wang X M, Zhao J W. Optimal flocculating sedimentation parameters of unclassified tailings slurry. J Cent South Univ Sci Technol, 2016, 47(5): 1675 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201605029.htm

    王新民, 趙建文. 全尾砂漿最佳絮凝沉降參數. 中南大學學報(自然科學版), 2016, 47(5): 1675 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201605029.htm
    [18] Liu X J, Zhu H L, Liang L X. Digital rock physics of sandstone based on micro-CT technology. Chin J Geophys, 2014, 57(4): 1133 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201404011.htm

    劉向君, 朱洪林, 梁利喜. 基于微CT技術的砂巖數字巖石物理實驗. 地球物理學報, 2014, 57(4): 1133 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201404011.htm
    [19] Li Y L, Zhang Y F, Cong L, et al. Application of X-CT scanning technique in the characterization of micro pore structure of tight sandstone reservoir: Taking the Fuyu Oil Layer in Daan Oilfield as an Example. J Jilin Univ Earth Sci Ed, 2016, 46(2): 379 https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201602007.htm

    李易霖, 張云峰, 叢琳, 等. X-CT掃描成像技術在致密砂巖微觀孔隙結構表征中的應用: 以大安油田扶余油層為例. 吉林大學學報: 地球科學版, 2016, 46(2): 379 https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201602007.htm
    [20] Song D Y, He K K, Ji X F, et al. Fine characterization of pores and fractures in coal based on a CT scan. Nat Gas Ind, 2018, 38(3): 41 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803007.htm

    宋黨育, 何凱凱, 吉小峰, 等. 基于CT掃描的煤中孔裂隙精細表征. 天然氣工業, 2018, 38(3): 41 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803007.htm
    [21] Al-Kharusi A S, Blunt M J. Network extraction from sandstone and carbonate pore space images. J Pet Sci Eng, 2007, 56(4): 219 doi: 10.1016/j.petrol.2006.09.003
    [22] Su N. Three-Dimensional Reconstruction of Microscopic Pore Structure in Low-Permeability Reservoir [Dissertation]. Chengdu: Southwest Petroleum University, 2011

    蘇娜. 低滲氣藏微觀孔隙結構三維重構研究[學位論文]. 成都: 西南石油大學, 2011
    [23] Wang D X. The Research of Digital Core Network Extraction Based on Micro-CT Images [Dissertation]. Changchun: Jilin University, 2015

    王冬欣. 基于Micro-CT圖像的數字巖心孔隙級網絡建模研究[學位論文]. 長春: 吉林大學, 2015
    [24] Wu A X, Wang Y, Wang H J. Effect of rake rod number and arrangement on tailings thickening performance. J Cent South Univ Sci Technol, 2014, 45(1): 244 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201401034.htm

    吳愛祥, 王勇, 王洪江. 導水桿數量和排列對尾礦濃密的影響機理. 中南大學學報: 自然科學版, 2014, 45(1): 244 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201401034.htm
  • 加載中
圖(13) / 表(2)
計量
  • 文章訪問數:  1027
  • HTML全文瀏覽量:  452
  • PDF下載量:  41
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-10-03
  • 刊出日期:  2019-08-01

目錄

    /

    返回文章
    返回