<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于超級絮凝的超細尾砂絮凝行為優化

吳愛祥 阮竹恩 王建棟 尹升華 艾純明

吳愛祥, 阮竹恩, 王建棟, 尹升華, 艾純明. 基于超級絮凝的超細尾砂絮凝行為優化[J]. 工程科學學報, 2019, 41(8): 981-986. doi: 10.13374/j.issn2095-9389.2019.08.003
引用本文: 吳愛祥, 阮竹恩, 王建棟, 尹升華, 艾純明. 基于超級絮凝的超細尾砂絮凝行為優化[J]. 工程科學學報, 2019, 41(8): 981-986. doi: 10.13374/j.issn2095-9389.2019.08.003
WU Ai-xiang, RUAN Zhu-en, WANG Jian-dong, YIN Sheng-hua, AI Chun-ming. Optimizing the flocculation behavior of ultrafine tailings by ultra-flocculation[J]. Chinese Journal of Engineering, 2019, 41(8): 981-986. doi: 10.13374/j.issn2095-9389.2019.08.003
Citation: WU Ai-xiang, RUAN Zhu-en, WANG Jian-dong, YIN Sheng-hua, AI Chun-ming. Optimizing the flocculation behavior of ultrafine tailings by ultra-flocculation[J]. Chinese Journal of Engineering, 2019, 41(8): 981-986. doi: 10.13374/j.issn2095-9389.2019.08.003

基于超級絮凝的超細尾砂絮凝行為優化

doi: 10.13374/j.issn2095-9389.2019.08.003
基金項目: 

國家自然科學基金重點資助項目 51834001

國家自然科學基金重點資助項目 51804015

國家重點研發計劃資助項目 2017YFC0602903

金屬礦山高效開采與安全教育部重點實驗室開放基金資助項目 ustbmslab201806

詳細信息
    通訊作者:

    阮竹恩, E-mail: ziyuan0902rze@163.com

  • 中圖分類號: TD853

Optimizing the flocculation behavior of ultrafine tailings by ultra-flocculation

More Information
  • 摘要: 為了研究不同絮凝條件下超細尾砂的絮凝效果, 本文基于超級絮凝理論, 應用超級絮凝測試儀UFT-ТFS-029, 采用相對絮凝率表征人造超細尾砂在pH值為9~12、絮凝劑單耗fd=2~20 g·t-1、料漿剪切速率γ=100~2000 s-1、料漿固體體積分數φ=2%~14%等條件下的絮凝行為. 發現相對絮凝率隨著pH、絮凝劑單耗、剪切速率的增加均先增加后減少, 而隨著漿料固體體積分數的增加逐漸減少, 并獲得了一定條件下的最優絮凝條件, 即pH值為11、fd=12 g·t-1γ=500 s-1φ=4%. 同時, 固體體積分數越高, 達到最優相對絮凝率所需的最優剪切速率對固體體積分數的依賴性也越高. 因此, 在實際生產中需要對pH、絮凝劑單耗、剪切速率與固體體積分數等工況參數進行調整, 以達到最優絮凝效果. 應用超級絮凝理論可實現超細尾砂在極短時間內實現很好的絮凝, 為基于流場剪切速率與停留時間的深錐濃密機進料井設計提供參考.

     

  • 圖  1  人造尾砂化學組成

    Figure  1.  Chemical composition of artificial tailings

    圖  2  人造尾砂粒徑分布

    Figure  2.  Grain size distribution of artificial tailings

    圖  3  UFT-ТFS-029超級絮凝測試儀. (a) 實物照片; (b) 原理圖

    Figure  3.  UltraflocTester UFT-ТFS-029: (a) photograph; (b) schematic diagram

    圖  4  不同pH條件下的相對絮凝率、上清液濁度與Zeta電位

    Figure  4.  Flocculation rate, turbidity, and Zeta potential at different pH values

    圖  5  不同絮凝劑單耗條件下剪切速率對相對絮凝率的影響

    Figure  5.  Effect of shear rate on flocculation rate for different flocculant dosages

    圖  6  剪切速率對相對絮凝率的影響機理

    Figure  6.  Effect of shear rate on flocculation rate

    圖  7  絮凝劑單耗對相對絮凝率的影響機理

    Figure  7.  Effect of flocculant dosage on flocculation rate

    圖  8  不同固體體積分數的最優剪切速率與最優相對絮凝率

    Figure  8.  Optimal shear rate and flocculation rate versus solid volume fraction

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wang C, Harbottle D, Liu Q X, et al. Current state of fine mineral tailings treatment: a critical review on theory and practice. Miner Eng, 2014, 58: 113 doi: 10.1016/j.mineng.2014.01.018
    [2] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201805001.htm

    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5): 517 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201805001.htm
    [3] Zhang Q L, Zhou D H, Wang X M, et al. Experimental study on flocculating sedimentation of ultra-fine unclassified tailings. J Guangxi Univ Nat Sci Ed, 2013, 38(2): 451 doi: 10.3969/j.issn.1001-7445.2013.02.031

    張欽禮, 周登輝, 王新民, 等. 超細全尾砂絮凝沉降實驗研究. 廣西大學學報(自然科學版), 2013, 38(2): 451 doi: 10.3969/j.issn.1001-7445.2013.02.031
    [4] Wang X M, Liu J X, Chen Q S, et al. Optimal flocculating sedimentation parameters of unclassified tailings. Sci Technol Rev, 2014, 32(17): 23 doi: 10.3981/j.issn.1000-7857.2014.17.003

    王新民, 劉吉祥, 陳秋松, 等. 超細全尾砂絮凝沉降參數優化模型. 科技導報, 2014, 32(17): 23 doi: 10.3981/j.issn.1000-7857.2014.17.003
    [5] Fernando Concha A. Solid-Liquid Separation in the Mining Industry. Switzerland: Springer International Publishing, 2014
    [6] Wang Y, Wu A X, Wang H J, et al. Influence mechanism of flocculant dosage on tailings thickening. J Univ Sci Technol Beijing, 2013, 35(11): 1419 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201311004.htm

    王勇, 吳愛祥, 王洪江, 等. 絮凝劑用量對尾礦濃密的影響機理. 北京科技大學學報, 2013, 35(11): 1419 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201311004.htm
    [7] Zhang Q L, Wang S, Wang X M. Influence rules of unit consumptions of flocculants on interface sedimentation velocity of unclassified tailings slurry. Chin J Nonferrous Met, 2017, 27(2): 318 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201702012.htm

    張欽禮, 王石, 王新民. 絮凝劑單耗對全尾砂漿渾液面沉速的影響規律. 中國有色金屬學報, 2017, 27(2): 318 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201702012.htm
    [8] Zhang L F, Wu A X, Wang H J, et al. Representation of batch settling via fitting a logistic function. Miner Eng, 2018, 128: 160 doi: 10.1016/j.mineng.2018.08.039
    [9] Zhu L Y, Lü W S, Yang P, et al. Thickening sedimentation of unclassified tailings under influence of external field based on response surface method. Chin J Nonferrous Met, 2018, 28(9): 1908 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201809022.htm

    諸利一, 呂文生, 楊鵬, 等. 基于響應面法外場作用下全尾砂濃密沉降試驗. 中國有色金屬學報, 2018, 28(9): 1908 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201809022.htm
    [10] Jiao H Z, Wang H J, Wu A X, et al. Rule and mechanism of flocculation sedimentation of unclassified tailings. J Univ Sci Technol Beijing, 2010, 32(6): 702 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201006002.htm

    焦華喆, 王洪江, 吳愛祥, 等. 全尾砂絮凝沉降規律及其機理. 北京科技大學學報, 2010, 32(6): 702 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201006002.htm
    [11] Concha F, Segovia J P, Vergara S, et al. Audit industrial thickeners with new on-line instrumentation. Powder Technol, 2017, 314: 680 doi: 10.1016/j.powtec.2017.03.040
    [12] Carissimi E, Rubio J. Polymer-bridging flocculation performance using turbulent pipe flow. Miner Eng, 2015, 70: 20 doi: 10.1016/j.mineng.2014.08.019
    [13] Rulyov N N. Ultra-flocculation: Theory, experiment, applications // Proceedings of the 5th UBC-McGill Biennial International Symposium on Fundamentals of Mineral. Hamilton, 2004: 197
    [14] Konduri M K R, Fatehi P. Influence of pH and ionic strength on flocculation of clay suspensions with cationic xylan copolymer. Colloids Surf A, 2017, 530: 20 doi: 10.1016/j.colsurfa.2017.07.045
    [15] Concha F, Rulyov N N, Laskowski J S. Settling velocities of particulate systems 18: solid flux density determination by ultra-flocculation. Int J Miner Process, 2012, 104-105: 53 doi: 10.1016/j.minpro.2011.12.007
    [16] Botha L, Soares J B P. The influence of tailings composition on flocculation. Can J Chem Eng, 2015, 93(9): 1514 doi: 10.1002/cjce.22241
    [17] Patil D P, Andrews J R G, Uhlherr P H T. Shear flocculation—kinetics of floc coalescence and breakage. Int J Miner Process, 2001, 61(3): 171 doi: 10.1016/S0301-7516(00)00036-3
    [18] Tanguay M, Fawell P, Adkins S. Modelling the impact of two different flocculants on the performance of a thickener feedwell. Appl Math Model, 2014, 38(17-18): 4262 doi: 10.1016/j.apm.2014.04.047
    [19] Dusting J, Balabani S. Mixing in a Taylor-Couette reactor in the non-wavy flow regime. Chem Eng Sci, 2009, 64(13): 3103 doi: 10.1016/j.ces.2009.03.046
    [20] Gregory J. Solid-Liquid Sparation. Chichester: Ellis Horwood Limited, 1984
    [21] Maes A, Vreysen S, Rulyov N N. Effect of various parameters on the ultraflocculation of fine sorbent particles, used in the wastewater purification from organic contaminants. Water Res, 2003, 37(9): 2090 doi: 10.1016/S0043-1354(02)00551-1
    [22] Li S L, Gao L H, Cao Y J, et al. Effect of pH on the flocculation behaviors of kaolin using a pH-sensitive copolymer. Water Sci Technol, 2016, 74(3): 729 doi: 10.2166/wst.2016.266
    [23] Heath A R, Bahri P A, Fawell P D, et al. Polymer flocculation of calcite: Population balance model. AIChE J, 2006, 52(5): 1641 doi: 10.1002/aic.10749
    [24] Serra T, Colomer J, Logan B E. Efficiency of different shear devices on flocculation. Water Res, 2008, 42(4-5): 1113 doi: 10.1016/j.watres.2007.08.027
    [25] Mietta F, Chassagne C, Manning A J, et al. Influence of shear rate, organic matter content, pH and salinity on mud flocculation. Ocean Dyn, 2009, 59(5): 751 doi: 10.1007/s10236-009-0231-4
    [26] Gao Z Y, Wu A X, Peng N B, et al. Research on the flocculation settlement rules and parameters optimization of filling tailings. Met Mine, 2017(6): 186 doi: 10.3969/j.issn.1001-1250.2017.06.037

    高志勇, 吳愛祥, 彭乃兵, 等. 充填尾礦絮凝沉降規律及參數優化. 金屬礦山, 2017(6): 186 doi: 10.3969/j.issn.1001-1250.2017.06.037
    [27] Banisi S, Yahyaei M. Feed dilution-based design of a thickener for refuse slurry of a coal preparation plant. Int J Coal Prep Util, 2008, 28(4): 201 doi: 10.1080/19392690802391189
    [28] Smoluchowski M. Versuch eine mathematischen Theorie der Koagulationskinetik kolloidaler Losungen. Z Phys Chem, 1918, 92(1): 129 http://www.researchgate.net/publication/248320589_Versuch_einer_mathematischen_Theorie_der_Koagulationskinetik_kol-loider_Losungen
    [29] Owen A T, Nguyen T V, Fawell P D. The effect of flocculant solution transport and addition conditions on feedwell performance in gravity thickeners. Int J Miner Process, 2009, 93(2): 115 doi: 10.1016/j.minpro.2009.07.001
    [30] Li Q L, Li M, Lei B, et al. Optimization of feedwell design in red mud thickener based on orthogonal experiment. Chin J Nonferrous Met, 2014, 24(4): 1063 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201404030.htm

    李秋龍, 李茂, 雷波, 等. 基于正交試驗的赤泥沉降槽中心桶結構優化. 中國有色金屬學報, 2014, 24(4): 1063 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201404030.htm
  • 加載中
圖(8)
計量
  • 文章訪問數:  1301
  • HTML全文瀏覽量:  520
  • PDF下載量:  40
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-02-22
  • 刊出日期:  2019-08-01

目錄

    /

    返回文章
    返回