<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

5G超密集網絡的能量效率研究綜述

馬忠貴 宋佳倩

馬忠貴, 宋佳倩. 5G超密集網絡的能量效率研究綜述[J]. 工程科學學報, 2019, 41(8): 968-980. doi: 10.13374/j.issn2095-9389.2019.08.002
引用本文: 馬忠貴, 宋佳倩. 5G超密集網絡的能量效率研究綜述[J]. 工程科學學報, 2019, 41(8): 968-980. doi: 10.13374/j.issn2095-9389.2019.08.002
MA Zhong-gui, SONG Jia-qian. Survey of energy efficiency for 5G ultra-dense networks[J]. Chinese Journal of Engineering, 2019, 41(8): 968-980. doi: 10.13374/j.issn2095-9389.2019.08.002
Citation: MA Zhong-gui, SONG Jia-qian. Survey of energy efficiency for 5G ultra-dense networks[J]. Chinese Journal of Engineering, 2019, 41(8): 968-980. doi: 10.13374/j.issn2095-9389.2019.08.002

5G超密集網絡的能量效率研究綜述

doi: 10.13374/j.issn2095-9389.2019.08.002
基金項目: 

國家自然科學基金資助項目 61572074

中央高校基本科研業務費專項資金資助項目 FRF-GF-18-017B

詳細信息
    通訊作者:

    馬忠貴, E-mail: zhongguima@ustb.edu.cn

  • 中圖分類號: TN929.5

Survey of energy efficiency for 5G ultra-dense networks

More Information
  • 摘要: 首先從綠色通信入手, 對網絡能量效率的國內外研究現狀進行了分析. 在此基礎上, 對超密集網絡的關鍵性能指標, 即能量效率的各種定義進行了梳理, 為建模奠定了基礎. 其次, 討論了網絡能量效率建模和優化過程中經常使用的4種理論模型: 隨機幾何、博弈論、最優化理論和分數階規劃. 并綜述了能效提升的技術, 包括高能效部署與規劃、高能效基站休眠、高能效用戶關聯、高能效資源管理、高能效傳輸方式. 最后, 指出未來的可能的技術挑戰: 網絡能效理論與超密集網絡體系架構、超密集小基站高能效覆蓋機理、超密集網絡的柔性資源匹配機理、移動用戶群體行為建模與高能效服務方法. 通過研究超密集網絡高能效覆蓋機理和柔性資源匹配機理, 為未來無線通信網絡建模和分析提供設計依據與技術支撐.

     

  • 圖  1  快速增長的業務量與能耗之間的矛盾

    Figure  1.  Contradiction between the rapid growth in traffic and energy consumption

    圖  2  基站功耗構成示意圖

    Figure  2.  Schematic of energy consumption of base stations

    圖  3  基于最優化理論的模型求解與分析過程

    Figure  3.  Flow chart of the model solution and analysis based on optimization theory

    圖  4  密集網絡的多層重疊覆蓋部署模型

    Figure  4.  Deployment model of ultra-dense networks

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] You X H, Pan Z W, Gao X Q, et al. The 5G mobile communication: the development trends and its emerging key techniques. Scientia Sinica (Informationis), 2014, 44(5): 551 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201405001.htm

    尤肖虎, 潘志文, 高西奇, 等. 5G移動通信發展趨勢與若干關鍵技術. 中國科學: 信息科學, 2014, 44(5): 551 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201405001.htm
    [2] Yang C G, Li J D, Ni Q, et al. Interference-aware energy efficiency maximization in 5G ultra-dense networks. IEEE Trans Commun, 2017, 65(2): 728 doi: 10.1109/TCOMM.2016.2638906
    [3] Cisco. Ciscovisual networking index: global mobile data traffic forecast update, 2017—2022 white paper[J/OL]. Cisco Mobile VNI (2019-02-18)[2018-07-20]. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
    [4] The Climate Group. Smart2020: enabling the low carbon economy in the information age[R/OL]. Global e-Sustainability Initiative (2008-06-19)[2018-07-20]. https://www.theclimategroup.org/sites/default/files/archive/files/Smart2020Report.pdf
    [5] Zhang J M, Xie W L, Yang F Y. Architecture and solutions of 5G ultra dense network. Telecommun Sci, 2016, 32(6): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201606006.htm

    張建敏, 謝偉良, 楊峰義. 5G超密集組網網絡架構及實現. 電信科學, 2016, 32(6): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201606006.htm
    [6] Kamel M, Hamouda W, Youssef A. Ultra-dense networks: a survey. IEEE Commun Surveys Tutorials, 2016, 18(4): 2522 doi: 10.1109/COMST.2016.2571730
    [7] Han T, Ansari N. Powering mobile networks with green energy. IEEE Wireless Commun, 2014, 21(1): 90 doi: 10.1109/MWC.2014.6757901
    [8] Greening L A, Greene D L, Difiglio C. Energy efficiency and consumption-the rebound effect-a survey. Energy Policy, 2000, 28(6-7): 389 doi: 10.1016/S0301-4215(00)00021-5
    [9] Soh Y S, Quek T Q S, Kountouris M, et al. Energy efficient heterogeneous cellular networks. IEEE J Sel Areas Commun, 2013, 31(5): 840 doi: 10.1109/JSAC.2013.130503
    [10] Samarakoon S, Bennis M, Saad W, et al. Ultra dense small cell networks: turning density into energy efficiency. IEEE J Sel Areas Commun, 2016, 34(5): 1267 doi: 10.1109/JSAC.2016.2545539
    [11] Bai L, Liu T T, Yang C Y. Interference coordination method and performance analysis in ultra-dense network (UDN). J Signal Process, 2015, 31(10): 1263 doi: 10.3969/j.issn.1003-0530.2015.10.007

    白璐, 劉婷婷, 楊晨陽. 超密集網絡中干擾協調方法及性能分析. 信號處理, 2015, 31(10): 1263 doi: 10.3969/j.issn.1003-0530.2015.10.007
    [12] Zhang T K, Zhao J J, An L, et al. Energy efficiency of base station deployment in ultra dense HetNets: a stochastic geometry analysis. IEEE Wireless Commun Lett, 2016, 5(2): 184 doi: 10.1109/LWC.2016.2516010
    [13] Liu Y P, Fang X M. Joint user association and resource allocation for self-backhaul ultra-dense networks. China Commun, 2016, 13(2): 1 doi: 10.1109/CC.2016.7405718
    [14] Zheng C, Fan J C, Luo X M. Spectrum and energy efficiency analysis of ultra dense network with sleep // 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN). Beijing, 2016: 392
    [15] Yang C G, Li J D, Ni Q, et al. Interference-aware energy efficiency maximization in 5G ultra-dense networks. IEEE Trans Commun, 2017, 65(2): 728 doi: 10.1109/TCOMM.2016.2638906
    [16] Zhang Y Y, Xia W W, Zhu Y P, et al. An optimal energy-efficient resource allocation algorithm in ultra-dense network. Telecommun Sci, 2017, 33(10): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201710005.htm

    章躍躍, 夏瑋瑋, 朱亞萍, 等. 超密集網絡中基于能效最優的資源分配算法. 電信科學, 2017, 33(10): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201710005.htm
    [17] Mahapatra R, Nijsure Y, Kaddoum G, et al. Energy efficiency tradeoff mechanism towards wireless green communication: a survey. IEEE Commun Surveys Tutorials, 2016, 18(1): 686 doi: 10.1109/COMST.2015.2490540
    [18] Yu W, Xu H S, Hematian A, et al. Towards energy efficiency in ultra dense networks // 2016 IEEE 35th IEEE Performance Computing and Communications Conference (IPCCC). Nanjing, 2016: 1
    [19] Venturino L, Zappone A, Risi C, et al. Energy-efficient scheduling and power allocation in downlink OFDMA networks with base station coordination. IEEE Trans Wireless Commun, 2015, 14(1): 1 doi: 10.1109/TWC.2014.2323971
    [20] Yang C G, Li J D, Guizani M. Cooperation for spectral and energy efficiency in ultra-dense small cell networks. IEEE Wireless Commun, 2016, 23(1): 64 doi: 10.1109/MWC.2016.7422407
    [21] Ren Q, Fan J C, Luo X M, et al. Analysis of spectral and energy efficiency in ultra-dense network // IEEE International Conference on Communication Workshop (ICCW). London, 2015: 2812
    [22] Cao D X, Zhou S, Niu Z S. Optimal combination of base station densities for energy-efficient two-tier heterogeneous cellular networks. IEEE Trans Wireless Commun, 2013, 12(9): 4350 doi: 10.1109/TWC.2013.080113.121280
    [23] Richter F, Fehske A J, Fettweis G P. Energy efficiency aspects of base station deployment strategies for cellular networks // 2009 IEEE 70th Vehicular Technology Conference Fall. Anchorage, 2009: 1
    [24] Cai Z Y, Liu D K. Baseband design for 5G UDN base stations: Methods and implementation. China Commun, 2017, 14(5): 59 doi: 10.1109/CC.2017.7942315
    [25] Bj?rnson E, Sanguinetti L, Kountouris M. Deploying dense networks for maximal energy efficiency: small cells meet massive MIMO. IEEE J Sel Areas Commun, 2016, 34(4): 832 doi: 10.1109/JSAC.2016.2544498
    [26] Niu Z S, Zhou S, Zhou S D, et al. Energy efficiency and resource optimized hyper-cellular mobile communication system architecture and its technical challenges. Scientia Sinica (Informationis), 2012, 42(10): 1191 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201210002.htm

    牛志升, 周盛, 周世東, 等. 能效與資源優化的超蜂窩移動通信系統新架構及其技術挑戰. 中國科學: 信息科學, 2012, 42(10): 1191 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201210002.htm
    [27] Yunas S F, Valkama M, Niemel? J. Spectral and energy efficiency of ultra-dense networks under different deployment strategies. IEEE Commun Mag, 2015, 53(1): 90 doi: 10.1109/MCOM.2015.7010521
    [28] He S W, Huang Y M, Yang L X, et al. Coordinated multicell multiuser precoding for maximizing weighted sum energy efficiency. IEEE Trans Signal Process, 2014, 62(3): 741 doi: 10.1109/TSP.2013.2294595
    [29] Miao G W, Himayat N, Li G Y, et al. Low-complexity energy-efficient scheduling for uplink OFDMA. IEEE Trans Commun, 2012, 60(1): 112 doi: 10.1109/TCOMM.2011.112811.090122
    [30] Buzzi S, Colavolpe G, Saturnino D, et. al. Potential games for energy-efficient power control and subcarrier allocation in uplink multicell OFDMA systems. IEEE J Sel Top Signal Process, 2012, 6(2): 89 doi: 10.1109/JSTSP.2011.2177069
    [31] Du B, Pan C H, Zhang W C, et al. Distributed energy-efficient power optimization for CoMP systems with max-min fairness. IEEE Commun Lett, 2014, 18(6): 999 doi: 10.1109/LCOMM.2014.2317734
    [32] Zhang H. Research of Area Spectral Efficiency and Area Energy Efficiency in Ultra-Dense Networks[Dissertation]. Harbin: Harbin Institute of Technology, 2016

    張洪. 超密集組網中區域頻譜效率及區域能量效率的研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2016
    [33] Li C, Zhang J, Letaief K B. Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations. IEEE Trans Wireless Commun, 2014, 13(5): 2505 doi: 10.1109/TWC.2014.031714.131020
    [34] Chiu S N, Stoyan D, Kendall W S, et al. Stochastic Geometry and Its Application. 3rd Ed. Chichester: John Wiley and Sons Ltd, 2013
    [35] Mukherjee S. Analytical Modeling of Heterogeneous Cellular Networks-Geometry, Coverage, and Capacity. Cambridge: Cambridge University Press, 2014
    [36] Haenggi M. Stochastic Geometry for Wireless Networks. Cambridge: Cambridge University Press, 2013
    [37] Wang L S, Kuo G S G S. Mathematical modeling for network selection in heterogeneous wireless networks: a tutorial. IEEE Commun Surveys Tutorials, 2013, 15(1): 271 doi: 10.1109/SURV.2012.010912.00044
    [38] Trestian R, Ormond O, Muntean G M. Game theory-based network selection: solutions and challenges. IEEE Commun Surveys Tutorials, 2012, 14(4): 1212 doi: 10.1109/SURV.2012.010912.00081
    [39] Ma Z G. Game Theory and Its Applications in Wireless Communication Networks. Beijing: National Defense Industry Press, 2015

    馬忠貴. 博弈論及其在無線通信網絡中的應用. 北京: 國防工業出版社, 2015
    [40] Han Z, Niyato D, Saad W, et al. Game Theory in Wireless and Communication Networks: Theory, Models, and Applications. Cambridge: Cambridge University Press, 2012
    [41] Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004
    [42] Sundaram R K. A First Course in Optimization Theory. Cambridge: Cambridge University Press, 1996
    [43] Zappone A, Jorswieck E. Energy efficiency in wireless networks via fractional programming theory. Found Trends Commun Inform Theory, 2015, 11(3-4): 185 doi: 10.1561/0100000088
    [44] Verma R U. Semi-Infinite Fractional Programming. 1st Ed. Singapore: Springer Verlag, 2017
    [45] López-Pérez D, Ding M, Claussen H, et al. Towards 1 Gbps/UE in cellular systems: understanding ultra-dense small cell deployments. IEEE Commun Surveys Tutorials, 2015, 17(4): 2078 doi: 10.1109/COMST.2015.2439636
    [46] Ma Z G, Liu L Y, Yan W B, et al. Deployment model of three-layer heterogeneous cellular networks based on Poisson clustered process. Chin J Eng, 2017, 39(2): 309 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201702020.htm

    馬忠貴, 劉立宇, 閆文博, 等. 基于泊松簇過程的三層異構蜂窩網絡部署模型. 工程科學學報, 2017, 39(2): 309 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201702020.htm
    [47] Hossain E, Rasti M, Tabassum H, et al. Evolution towards 5G multi-tier cellular wireless networks: an interference management perspective. IEEE Wireless Commun, 2014, 21(3): 118 doi: 10.1109/MWC.2014.6845056
    [48] Xu J M, Zhang J, Andrews J G. On the accuracy of the Wyner model in cellular networks. IEEE Trans Wireless Commun, 2011, 10(9): 3098 doi: 10.1109/TWC.2011.062911.100481
    [49] B?aszczyszyn B, Haenggi M, Keeler P, et al. Stochastic Geometry Analysis of Cellular Networks. Cambridge: Cambridge University Press, 2018
    [50] ElSawy H, Hossain E, Haenggi M. Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun Surveys Tutorials, 2013, 15(3): 996 doi: 10.1109/SURV.2013.052213.00000
    [51] Andrews J G, Baccelli F, Ganti R K. A tractable approach to coverage and rate in cellular networks. IEEE Trans Commun, 2011, 59(11): 3122 doi: 10.1109/TCOMM.2011.100411.100541
    [52] Dhillon H S, Ganti R K, Baccelli F, et al. Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE J Sel Areas Commun, 2012, 30(3): 550 doi: 10.1109/JSAC.2012.120405
    [53] Cho S R, Choi W. Energy-efficient repulsive cell activation for heterogeneous cellular networks. IEEE J Sel Areas Commun, 2013, 31(5): 870 doi: 10.1109/JSAC.2013.130506
    [54] Zhong Y, Zhang W Y. Multi-channel hybrid access femtocells: a stochastic geometric analysis. IEEE Trans Commun, 2013, 61(7): 3016 doi: 10.1109/TCOMM.2013.050813.110508
    [55] Chen C L, Elliott R C, Krzymien W A. Downlink coverage analysis of N-tier heterogeneous cellular networks based on clustered stochastic geometry // Asilomar Conference on Signals, Systems and Computers. Pacific Grove, 2013: 1577
    [56] Ying Q L, Zhao Z F, Zhou Y F, et al. Characterizing spatial patterns of base stations in cellular networks // IEEE/CIC International Conference on Communications in China (ICCC). Shanghai, 2014: 490
    [57] Suryaprakash V, M?ller J, Fettweis G. On the modeling and analysis of heterogeneous radio access networks using a Poisson cluster process. IEEE Trans Wireless Commun, 2015, 14(2): 1035 doi: 10.1109/TWC.2014.2363454
    [58] Chun Y J, Hasna M O, Ghrayeb A. Modeling heterogeneous cellular networks interference using Poisson cluster processes. IEEE J Sel Areas Commun, 2015, 33(10): 2182 doi: 10.1109/JSAC.2015.2435271
    [59] Deng N, Zhou W Y, Haenggi M. Heterogeneous cellular network models with dependence. IEEE J Sel Areas Commun, 2015, 33(10): 2167 doi: 10.1109/JSAC.2015.2435471
    [60] Zhang L, Yang H C, Hasna M O. Generalized area spectral efficiency: an effective performance metric for green wireless communications. IEEE Trans Commun, 2014, 62(2): 747 doi: 10.1109/TCOMM.2013.122913.130138
    [61] Hou Y, Laurenson D I. Energy efficiency of high QoS heterogeneous wireless communication network // IEEE 72nd Vehicular Technology Conference. Ottawa, 2010: 1
    [62] Ge X H, Yang J, Gharavi H, et al. Energy efficiency challenges of 5G small cell networks. IEEE Commun Mag, 2017, 55(5): 184 doi: 10.1109/MCOM.2017.1600788
    [63] Tsilimantos D, Gorce J M, Altman E. Stochastic analysis of energy savings with sleep mode in OFDMA wireless networks // 2013 Proceedings IEEE INFOCOM. Turin, 2013: 1097
    [64] Saker L, Elayoubi S E, Combes R, et al. Optimal control of wake up mechanisms of femtocells in heterogeneous networks. IEEE J Sel Areas Commun, 2012, 30(3): 664 doi: 10.1109/JSAC.2012.120415
    [65] Dini P, Miozzo M, Bui N, et al. A model to analyze the energy savings of base station sleep mode in LTE HetNets // IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing. Beijing, 2013: 1375
    [66] Falconetti L, Hevizi L, Godor I. Sleep mode control for low power nodes in heterogeneous networks // ISWCS 2013; The Tenth International Symposium on Wireless Communication Systems. Ilmenau, 2013: 321
    [67] Guo X Y, Niu Z S, Zhou S, et al. Delay-constrained energy-optimal base station sleeping control. IEEE J Sel Areas Commun, 2016, 34(5): 1073 doi: 10.1109/JSAC.2016.2520221
    [68] Zhang Y L, Xu Y H, Sun Y M, et al. Energy efficiency of small cell networks: metrics, methods and market. IEEE Access, 2017, 5: 5965 doi: 10.1109/ACCESS.2017.2696025
    [69] Kim S, Choi S, Lee B G. A joint algorithm for base station operation and user association in heterogeneous networks. IEEE Commun Lett, 2013, 17(8): 1552 doi: 10.1109/LCOMM.2013.070113.130730
    [70] Liu D T, Wang L F, Chen Y, et al. User association in 5G networks: a survey and an outlook. IEEE Commun Surveys Tutorials, 2016, 18(2): 1018 doi: 10.1109/COMST.2016.2516538
    [71] Sangiamwong J, Saito Y, Miki N, et al. Investigation on cell selection methods associated with inter-cell interference coordination in heterogeneous networks for LTE-advanced downlink // 17th European Wireless Conference- Sustainable Wireless Technologies. Vienna, 2011: 117
    [72] Jo H S, Sang Y J, Xia P, et al. Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis. IEEE Trans Wireless Commun, 2012, 11(10): 3484 doi: 10.1109/TWC.2012.081612.111361
    [73] Guvenc I. Capacity and fairness analysis of heterogeneous networks with range expansion and interference coordination. IEEE Commun Lett, 2011, 15(10): 1084 doi: 10.1109/LCOMM.2011.082611.111387
    [74] Andrews J G. Seven ways that HetNets are a cellular paradigm shift. IEEE Commun Mag, 2013, 51(3): 136 doi: 10.1109/MCOM.2013.6476878
    [75] Zhuang B N, Guo D N, Honig M L. Energy-efficient cell activation, user association, and spectrum allocation in heterogeneous networks. IEEE J Sel Areas Commun, 2016, 34(4): 823 doi: 10.1109/JSAC.2016.2544478
    [76] Elsawy H, Dahrouj H, Al-Naffouri T Y, et al. Virtualized cognitive network architecture for 5G cellular networks. IEEE Commun Mag, 2015, 53(7): 78 doi: 10.1109/MCOM.2015.7158269
    [77] Zhou T Q, Huang Y M, Huang W, et al. QoS-aware user association for load balancing in heterogeneous cellular networks // IEEE 80th Vehicular Technology Conference (VTC2014-Fall). Vancouver, 2014: 1
    [78] Shen K M, Yu W. Distributed pricing-based user association for downlink heterogeneous cellular networks. IEEE J Sel Areas Commun, 2014, 32(6): 1100 doi: 10.1109/JSAC.2014.2328143
    [79] Zandi M, Dong M, Grami A. Dynamic spectrum access via channel-aware heterogeneous multi-channel auction with distributed learning. IEEE Trans Wireless Commun, 2015, 14(11): 5913 doi: 10.1109/TWC.2015.2444375
    [80] Chen X F, Wu J S, Cai Y M, et al. Energy-efficiency oriented traffic offloading in wireless networks: a brief survey and a learning approach for heterogeneous cellular networks. IEEE J Sel Areas Commun, 2015, 33(4): 627 doi: 10.1109/JSAC.2015.2393496
    [81] Chen S Z, Qin F, Hu B, et al. User-centric ultra-dense networks for 5G: challenges, methodologies and directions. IEEE Wireless Commun, 2016, 23(2): 78 doi: 10.1109/MWC.2016.7462488
    [82] Rao J B, Fapojuwo A O. A survey of energy efficient resource management techniques for multicell cellular networks. IEEE Commun Surveys Tutorials, 2014, 16(1): 154 doi: 10.1109/SURV.2013.042313.00226
    [83] Liu J L, Xiao W M. Optimal resource allocation in ultra-dense networks with many carriers // 2015 49th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, 2015: 653
    [84] Yao C T, Yang C Y, Xiong Z X. Energy-saving predictive resource planning and allocation. IEEE Trans Commun, 2016, 64(12): 5078 doi: 10.1109/TCOMM.2016.2608822
    [85] Xu W J, Liu T T, Yang C Y, et al. Green predictive resource allocation for ultra-dense networks (UDNs). J Signal Process, 2017, 33(4): 618 https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201704025.htm

    徐偉嘉, 劉婷婷, 楊晨陽, 等. 超密集網絡中的綠色預測資源分配. 信號處理, 2017, 33(4): 618 https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201704025.htm
    [86] Zhou Z Y, Dong M X, Ota K, et al. Energy-efficient context-aware matching for resource allocation in ultra-dense small cells. IEEE Access, 2015, 3: 1849 doi: 10.1109/ACCESS.2015.2478863
    [87] Li W, Wang J, Shao Q J, et al. Efficient resource allocation algorithms for energy efficiency maximization in ultra-dense network // GLOBECOM 2017—2017 IEEE Global Communications Conference. Singapore, 2017: 1
    [88] Li W C, Zhang J. Cluster-based resource allocation scheme with QoS guarantee in ultra-dense networks. IET Commun, 2018, 12(7): 861 doi: 10.1049/iet-com.2017.1331
  • 加載中
圖(4)
計量
  • 文章訪問數:  1381
  • HTML全文瀏覽量:  645
  • PDF下載量:  65
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-07-31
  • 刊出日期:  2019-08-01

目錄

    /

    返回文章
    返回