[1] |
You X H, Pan Z W, Gao X Q, et al. The 5G mobile communication: the development trends and its emerging key techniques. Scientia Sinica (Informationis), 2014, 44(5): 551 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201405001.htm尤肖虎, 潘志文, 高西奇, 等. 5G移動通信發展趨勢與若干關鍵技術. 中國科學: 信息科學, 2014, 44(5): 551 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201405001.htm
|
[2] |
Yang C G, Li J D, Ni Q, et al. Interference-aware energy efficiency maximization in 5G ultra-dense networks. IEEE Trans Commun, 2017, 65(2): 728 doi: 10.1109/TCOMM.2016.2638906
|
[3] |
Cisco. Ciscovisual networking index: global mobile data traffic forecast update, 2017—2022 white paper[J/OL]. Cisco Mobile VNI (2019-02-18)[2018-07-20]. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
|
[4] |
The Climate Group. Smart2020: enabling the low carbon economy in the information age[R/OL]. Global e-Sustainability Initiative (2008-06-19)[2018-07-20]. https://www.theclimategroup.org/sites/default/files/archive/files/Smart2020Report.pdf
|
[5] |
Zhang J M, Xie W L, Yang F Y. Architecture and solutions of 5G ultra dense network. Telecommun Sci, 2016, 32(6): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201606006.htm張建敏, 謝偉良, 楊峰義. 5G超密集組網網絡架構及實現. 電信科學, 2016, 32(6): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201606006.htm
|
[6] |
Kamel M, Hamouda W, Youssef A. Ultra-dense networks: a survey. IEEE Commun Surveys Tutorials, 2016, 18(4): 2522 doi: 10.1109/COMST.2016.2571730
|
[7] |
Han T, Ansari N. Powering mobile networks with green energy. IEEE Wireless Commun, 2014, 21(1): 90 doi: 10.1109/MWC.2014.6757901
|
[8] |
Greening L A, Greene D L, Difiglio C. Energy efficiency and consumption-the rebound effect-a survey. Energy Policy, 2000, 28(6-7): 389 doi: 10.1016/S0301-4215(00)00021-5
|
[9] |
Soh Y S, Quek T Q S, Kountouris M, et al. Energy efficient heterogeneous cellular networks. IEEE J Sel Areas Commun, 2013, 31(5): 840 doi: 10.1109/JSAC.2013.130503
|
[10] |
Samarakoon S, Bennis M, Saad W, et al. Ultra dense small cell networks: turning density into energy efficiency. IEEE J Sel Areas Commun, 2016, 34(5): 1267 doi: 10.1109/JSAC.2016.2545539
|
[11] |
Bai L, Liu T T, Yang C Y. Interference coordination method and performance analysis in ultra-dense network (UDN). J Signal Process, 2015, 31(10): 1263 doi: 10.3969/j.issn.1003-0530.2015.10.007白璐, 劉婷婷, 楊晨陽. 超密集網絡中干擾協調方法及性能分析. 信號處理, 2015, 31(10): 1263 doi: 10.3969/j.issn.1003-0530.2015.10.007
|
[12] |
Zhang T K, Zhao J J, An L, et al. Energy efficiency of base station deployment in ultra dense HetNets: a stochastic geometry analysis. IEEE Wireless Commun Lett, 2016, 5(2): 184 doi: 10.1109/LWC.2016.2516010
|
[13] |
Liu Y P, Fang X M. Joint user association and resource allocation for self-backhaul ultra-dense networks. China Commun, 2016, 13(2): 1 doi: 10.1109/CC.2016.7405718
|
[14] |
Zheng C, Fan J C, Luo X M. Spectrum and energy efficiency analysis of ultra dense network with sleep // 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN). Beijing, 2016: 392
|
[15] |
Yang C G, Li J D, Ni Q, et al. Interference-aware energy efficiency maximization in 5G ultra-dense networks. IEEE Trans Commun, 2017, 65(2): 728 doi: 10.1109/TCOMM.2016.2638906
|
[16] |
Zhang Y Y, Xia W W, Zhu Y P, et al. An optimal energy-efficient resource allocation algorithm in ultra-dense network. Telecommun Sci, 2017, 33(10): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201710005.htm章躍躍, 夏瑋瑋, 朱亞萍, 等. 超密集網絡中基于能效最優的資源分配算法. 電信科學, 2017, 33(10): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201710005.htm
|
[17] |
Mahapatra R, Nijsure Y, Kaddoum G, et al. Energy efficiency tradeoff mechanism towards wireless green communication: a survey. IEEE Commun Surveys Tutorials, 2016, 18(1): 686 doi: 10.1109/COMST.2015.2490540
|
[18] |
Yu W, Xu H S, Hematian A, et al. Towards energy efficiency in ultra dense networks // 2016 IEEE 35th IEEE Performance Computing and Communications Conference (IPCCC). Nanjing, 2016: 1
|
[19] |
Venturino L, Zappone A, Risi C, et al. Energy-efficient scheduling and power allocation in downlink OFDMA networks with base station coordination. IEEE Trans Wireless Commun, 2015, 14(1): 1 doi: 10.1109/TWC.2014.2323971
|
[20] |
Yang C G, Li J D, Guizani M. Cooperation for spectral and energy efficiency in ultra-dense small cell networks. IEEE Wireless Commun, 2016, 23(1): 64 doi: 10.1109/MWC.2016.7422407
|
[21] |
Ren Q, Fan J C, Luo X M, et al. Analysis of spectral and energy efficiency in ultra-dense network // IEEE International Conference on Communication Workshop (ICCW). London, 2015: 2812
|
[22] |
Cao D X, Zhou S, Niu Z S. Optimal combination of base station densities for energy-efficient two-tier heterogeneous cellular networks. IEEE Trans Wireless Commun, 2013, 12(9): 4350 doi: 10.1109/TWC.2013.080113.121280
|
[23] |
Richter F, Fehske A J, Fettweis G P. Energy efficiency aspects of base station deployment strategies for cellular networks // 2009 IEEE 70th Vehicular Technology Conference Fall. Anchorage, 2009: 1
|
[24] |
Cai Z Y, Liu D K. Baseband design for 5G UDN base stations: Methods and implementation. China Commun, 2017, 14(5): 59 doi: 10.1109/CC.2017.7942315
|
[25] |
Bj?rnson E, Sanguinetti L, Kountouris M. Deploying dense networks for maximal energy efficiency: small cells meet massive MIMO. IEEE J Sel Areas Commun, 2016, 34(4): 832 doi: 10.1109/JSAC.2016.2544498
|
[26] |
Niu Z S, Zhou S, Zhou S D, et al. Energy efficiency and resource optimized hyper-cellular mobile communication system architecture and its technical challenges. Scientia Sinica (Informationis), 2012, 42(10): 1191 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201210002.htm牛志升, 周盛, 周世東, 等. 能效與資源優化的超蜂窩移動通信系統新架構及其技術挑戰. 中國科學: 信息科學, 2012, 42(10): 1191 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201210002.htm
|
[27] |
Yunas S F, Valkama M, Niemel? J. Spectral and energy efficiency of ultra-dense networks under different deployment strategies. IEEE Commun Mag, 2015, 53(1): 90 doi: 10.1109/MCOM.2015.7010521
|
[28] |
He S W, Huang Y M, Yang L X, et al. Coordinated multicell multiuser precoding for maximizing weighted sum energy efficiency. IEEE Trans Signal Process, 2014, 62(3): 741 doi: 10.1109/TSP.2013.2294595
|
[29] |
Miao G W, Himayat N, Li G Y, et al. Low-complexity energy-efficient scheduling for uplink OFDMA. IEEE Trans Commun, 2012, 60(1): 112 doi: 10.1109/TCOMM.2011.112811.090122
|
[30] |
Buzzi S, Colavolpe G, Saturnino D, et. al. Potential games for energy-efficient power control and subcarrier allocation in uplink multicell OFDMA systems. IEEE J Sel Top Signal Process, 2012, 6(2): 89 doi: 10.1109/JSTSP.2011.2177069
|
[31] |
Du B, Pan C H, Zhang W C, et al. Distributed energy-efficient power optimization for CoMP systems with max-min fairness. IEEE Commun Lett, 2014, 18(6): 999 doi: 10.1109/LCOMM.2014.2317734
|
[32] |
Zhang H. Research of Area Spectral Efficiency and Area Energy Efficiency in Ultra-Dense Networks[Dissertation]. Harbin: Harbin Institute of Technology, 2016張洪. 超密集組網中區域頻譜效率及區域能量效率的研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2016
|
[33] |
Li C, Zhang J, Letaief K B. Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations. IEEE Trans Wireless Commun, 2014, 13(5): 2505 doi: 10.1109/TWC.2014.031714.131020
|
[34] |
Chiu S N, Stoyan D, Kendall W S, et al. Stochastic Geometry and Its Application. 3rd Ed. Chichester: John Wiley and Sons Ltd, 2013
|
[35] |
Mukherjee S. Analytical Modeling of Heterogeneous Cellular Networks-Geometry, Coverage, and Capacity. Cambridge: Cambridge University Press, 2014
|
[36] |
Haenggi M. Stochastic Geometry for Wireless Networks. Cambridge: Cambridge University Press, 2013
|
[37] |
Wang L S, Kuo G S G S. Mathematical modeling for network selection in heterogeneous wireless networks: a tutorial. IEEE Commun Surveys Tutorials, 2013, 15(1): 271 doi: 10.1109/SURV.2012.010912.00044
|
[38] |
Trestian R, Ormond O, Muntean G M. Game theory-based network selection: solutions and challenges. IEEE Commun Surveys Tutorials, 2012, 14(4): 1212 doi: 10.1109/SURV.2012.010912.00081
|
[39] |
Ma Z G. Game Theory and Its Applications in Wireless Communication Networks. Beijing: National Defense Industry Press, 2015馬忠貴. 博弈論及其在無線通信網絡中的應用. 北京: 國防工業出版社, 2015
|
[40] |
Han Z, Niyato D, Saad W, et al. Game Theory in Wireless and Communication Networks: Theory, Models, and Applications. Cambridge: Cambridge University Press, 2012
|
[41] |
Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004
|
[42] |
Sundaram R K. A First Course in Optimization Theory. Cambridge: Cambridge University Press, 1996
|
[43] |
Zappone A, Jorswieck E. Energy efficiency in wireless networks via fractional programming theory. Found Trends Commun Inform Theory, 2015, 11(3-4): 185 doi: 10.1561/0100000088
|
[44] |
Verma R U. Semi-Infinite Fractional Programming. 1st Ed. Singapore: Springer Verlag, 2017
|
[45] |
López-Pérez D, Ding M, Claussen H, et al. Towards 1 Gbps/UE in cellular systems: understanding ultra-dense small cell deployments. IEEE Commun Surveys Tutorials, 2015, 17(4): 2078 doi: 10.1109/COMST.2015.2439636
|
[46] |
Ma Z G, Liu L Y, Yan W B, et al. Deployment model of three-layer heterogeneous cellular networks based on Poisson clustered process. Chin J Eng, 2017, 39(2): 309 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201702020.htm馬忠貴, 劉立宇, 閆文博, 等. 基于泊松簇過程的三層異構蜂窩網絡部署模型. 工程科學學報, 2017, 39(2): 309 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201702020.htm
|
[47] |
Hossain E, Rasti M, Tabassum H, et al. Evolution towards 5G multi-tier cellular wireless networks: an interference management perspective. IEEE Wireless Commun, 2014, 21(3): 118 doi: 10.1109/MWC.2014.6845056
|
[48] |
Xu J M, Zhang J, Andrews J G. On the accuracy of the Wyner model in cellular networks. IEEE Trans Wireless Commun, 2011, 10(9): 3098 doi: 10.1109/TWC.2011.062911.100481
|
[49] |
B?aszczyszyn B, Haenggi M, Keeler P, et al. Stochastic Geometry Analysis of Cellular Networks. Cambridge: Cambridge University Press, 2018
|
[50] |
ElSawy H, Hossain E, Haenggi M. Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun Surveys Tutorials, 2013, 15(3): 996 doi: 10.1109/SURV.2013.052213.00000
|
[51] |
Andrews J G, Baccelli F, Ganti R K. A tractable approach to coverage and rate in cellular networks. IEEE Trans Commun, 2011, 59(11): 3122 doi: 10.1109/TCOMM.2011.100411.100541
|
[52] |
Dhillon H S, Ganti R K, Baccelli F, et al. Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE J Sel Areas Commun, 2012, 30(3): 550 doi: 10.1109/JSAC.2012.120405
|
[53] |
Cho S R, Choi W. Energy-efficient repulsive cell activation for heterogeneous cellular networks. IEEE J Sel Areas Commun, 2013, 31(5): 870 doi: 10.1109/JSAC.2013.130506
|
[54] |
Zhong Y, Zhang W Y. Multi-channel hybrid access femtocells: a stochastic geometric analysis. IEEE Trans Commun, 2013, 61(7): 3016 doi: 10.1109/TCOMM.2013.050813.110508
|
[55] |
Chen C L, Elliott R C, Krzymien W A. Downlink coverage analysis of N-tier heterogeneous cellular networks based on clustered stochastic geometry // Asilomar Conference on Signals, Systems and Computers. Pacific Grove, 2013: 1577
|
[56] |
Ying Q L, Zhao Z F, Zhou Y F, et al. Characterizing spatial patterns of base stations in cellular networks // IEEE/CIC International Conference on Communications in China (ICCC). Shanghai, 2014: 490
|
[57] |
Suryaprakash V, M?ller J, Fettweis G. On the modeling and analysis of heterogeneous radio access networks using a Poisson cluster process. IEEE Trans Wireless Commun, 2015, 14(2): 1035 doi: 10.1109/TWC.2014.2363454
|
[58] |
Chun Y J, Hasna M O, Ghrayeb A. Modeling heterogeneous cellular networks interference using Poisson cluster processes. IEEE J Sel Areas Commun, 2015, 33(10): 2182 doi: 10.1109/JSAC.2015.2435271
|
[59] |
Deng N, Zhou W Y, Haenggi M. Heterogeneous cellular network models with dependence. IEEE J Sel Areas Commun, 2015, 33(10): 2167 doi: 10.1109/JSAC.2015.2435471
|
[60] |
Zhang L, Yang H C, Hasna M O. Generalized area spectral efficiency: an effective performance metric for green wireless communications. IEEE Trans Commun, 2014, 62(2): 747 doi: 10.1109/TCOMM.2013.122913.130138
|
[61] |
Hou Y, Laurenson D I. Energy efficiency of high QoS heterogeneous wireless communication network // IEEE 72nd Vehicular Technology Conference. Ottawa, 2010: 1
|
[62] |
Ge X H, Yang J, Gharavi H, et al. Energy efficiency challenges of 5G small cell networks. IEEE Commun Mag, 2017, 55(5): 184 doi: 10.1109/MCOM.2017.1600788
|
[63] |
Tsilimantos D, Gorce J M, Altman E. Stochastic analysis of energy savings with sleep mode in OFDMA wireless networks // 2013 Proceedings IEEE INFOCOM. Turin, 2013: 1097
|
[64] |
Saker L, Elayoubi S E, Combes R, et al. Optimal control of wake up mechanisms of femtocells in heterogeneous networks. IEEE J Sel Areas Commun, 2012, 30(3): 664 doi: 10.1109/JSAC.2012.120415
|
[65] |
Dini P, Miozzo M, Bui N, et al. A model to analyze the energy savings of base station sleep mode in LTE HetNets // IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing. Beijing, 2013: 1375
|
[66] |
Falconetti L, Hevizi L, Godor I. Sleep mode control for low power nodes in heterogeneous networks // ISWCS 2013; The Tenth International Symposium on Wireless Communication Systems. Ilmenau, 2013: 321
|
[67] |
Guo X Y, Niu Z S, Zhou S, et al. Delay-constrained energy-optimal base station sleeping control. IEEE J Sel Areas Commun, 2016, 34(5): 1073 doi: 10.1109/JSAC.2016.2520221
|
[68] |
Zhang Y L, Xu Y H, Sun Y M, et al. Energy efficiency of small cell networks: metrics, methods and market. IEEE Access, 2017, 5: 5965 doi: 10.1109/ACCESS.2017.2696025
|
[69] |
Kim S, Choi S, Lee B G. A joint algorithm for base station operation and user association in heterogeneous networks. IEEE Commun Lett, 2013, 17(8): 1552 doi: 10.1109/LCOMM.2013.070113.130730
|
[70] |
Liu D T, Wang L F, Chen Y, et al. User association in 5G networks: a survey and an outlook. IEEE Commun Surveys Tutorials, 2016, 18(2): 1018 doi: 10.1109/COMST.2016.2516538
|
[71] |
Sangiamwong J, Saito Y, Miki N, et al. Investigation on cell selection methods associated with inter-cell interference coordination in heterogeneous networks for LTE-advanced downlink // 17th European Wireless Conference- Sustainable Wireless Technologies. Vienna, 2011: 117
|
[72] |
Jo H S, Sang Y J, Xia P, et al. Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis. IEEE Trans Wireless Commun, 2012, 11(10): 3484 doi: 10.1109/TWC.2012.081612.111361
|
[73] |
Guvenc I. Capacity and fairness analysis of heterogeneous networks with range expansion and interference coordination. IEEE Commun Lett, 2011, 15(10): 1084 doi: 10.1109/LCOMM.2011.082611.111387
|
[74] |
Andrews J G. Seven ways that HetNets are a cellular paradigm shift. IEEE Commun Mag, 2013, 51(3): 136 doi: 10.1109/MCOM.2013.6476878
|
[75] |
Zhuang B N, Guo D N, Honig M L. Energy-efficient cell activation, user association, and spectrum allocation in heterogeneous networks. IEEE J Sel Areas Commun, 2016, 34(4): 823 doi: 10.1109/JSAC.2016.2544478
|
[76] |
Elsawy H, Dahrouj H, Al-Naffouri T Y, et al. Virtualized cognitive network architecture for 5G cellular networks. IEEE Commun Mag, 2015, 53(7): 78 doi: 10.1109/MCOM.2015.7158269
|
[77] |
Zhou T Q, Huang Y M, Huang W, et al. QoS-aware user association for load balancing in heterogeneous cellular networks // IEEE 80th Vehicular Technology Conference (VTC2014-Fall). Vancouver, 2014: 1
|
[78] |
Shen K M, Yu W. Distributed pricing-based user association for downlink heterogeneous cellular networks. IEEE J Sel Areas Commun, 2014, 32(6): 1100 doi: 10.1109/JSAC.2014.2328143
|
[79] |
Zandi M, Dong M, Grami A. Dynamic spectrum access via channel-aware heterogeneous multi-channel auction with distributed learning. IEEE Trans Wireless Commun, 2015, 14(11): 5913 doi: 10.1109/TWC.2015.2444375
|
[80] |
Chen X F, Wu J S, Cai Y M, et al. Energy-efficiency oriented traffic offloading in wireless networks: a brief survey and a learning approach for heterogeneous cellular networks. IEEE J Sel Areas Commun, 2015, 33(4): 627 doi: 10.1109/JSAC.2015.2393496
|
[81] |
Chen S Z, Qin F, Hu B, et al. User-centric ultra-dense networks for 5G: challenges, methodologies and directions. IEEE Wireless Commun, 2016, 23(2): 78 doi: 10.1109/MWC.2016.7462488
|
[82] |
Rao J B, Fapojuwo A O. A survey of energy efficient resource management techniques for multicell cellular networks. IEEE Commun Surveys Tutorials, 2014, 16(1): 154 doi: 10.1109/SURV.2013.042313.00226
|
[83] |
Liu J L, Xiao W M. Optimal resource allocation in ultra-dense networks with many carriers // 2015 49th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, 2015: 653
|
[84] |
Yao C T, Yang C Y, Xiong Z X. Energy-saving predictive resource planning and allocation. IEEE Trans Commun, 2016, 64(12): 5078 doi: 10.1109/TCOMM.2016.2608822
|
[85] |
Xu W J, Liu T T, Yang C Y, et al. Green predictive resource allocation for ultra-dense networks (UDNs). J Signal Process, 2017, 33(4): 618 https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201704025.htm徐偉嘉, 劉婷婷, 楊晨陽, 等. 超密集網絡中的綠色預測資源分配. 信號處理, 2017, 33(4): 618 https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201704025.htm
|
[86] |
Zhou Z Y, Dong M X, Ota K, et al. Energy-efficient context-aware matching for resource allocation in ultra-dense small cells. IEEE Access, 2015, 3: 1849 doi: 10.1109/ACCESS.2015.2478863
|
[87] |
Li W, Wang J, Shao Q J, et al. Efficient resource allocation algorithms for energy efficiency maximization in ultra-dense network // GLOBECOM 2017—2017 IEEE Global Communications Conference. Singapore, 2017: 1
|
[88] |
Li W C, Zhang J. Cluster-based resource allocation scheme with QoS guarantee in ultra-dense networks. IET Commun, 2018, 12(7): 861 doi: 10.1049/iet-com.2017.1331
|