<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高居里溫度鐵酸鉍基陶瓷的研究進展

朱立峰 張波萍

朱立峰, 張波萍. 高居里溫度鐵酸鉍基陶瓷的研究進展[J]. 工程科學學報, 2019, 41(8): 961-967. doi: 10.13374/j.issn2095-9389.2019.08.001
引用本文: 朱立峰, 張波萍. 高居里溫度鐵酸鉍基陶瓷的研究進展[J]. 工程科學學報, 2019, 41(8): 961-967. doi: 10.13374/j.issn2095-9389.2019.08.001
ZHU Li-feng, ZHANG Bo-ping. Advances in research on high-Curie temperature BiFeO3-based ceramics[J]. Chinese Journal of Engineering, 2019, 41(8): 961-967. doi: 10.13374/j.issn2095-9389.2019.08.001
Citation: ZHU Li-feng, ZHANG Bo-ping. Advances in research on high-Curie temperature BiFeO3-based ceramics[J]. Chinese Journal of Engineering, 2019, 41(8): 961-967. doi: 10.13374/j.issn2095-9389.2019.08.001

高居里溫度鐵酸鉍基陶瓷的研究進展

doi: 10.13374/j.issn2095-9389.2019.08.001
基金項目: 

國家自然科學基金資助項目 51472026

中央高校基本科研業務費資助項目 FRF-TP-18-005A2

北京市自然科學基金資助項目 2164066

詳細信息
    通訊作者:

    張波萍, E-mail: bpzhang@ustb.edu.cn

  • 中圖分類號: TB34

Advances in research on high-Curie temperature BiFeO3-based ceramics

More Information
  • 摘要: 鐵酸鉍-鈦酸鋇(BiFeO3-BaTiO3, BF-BT) 基陶瓷由于具有高的居里溫度TC和大的自發極化強度Ps, 以及較高的壓電系數d33, 近年來受到了廣泛關注, 且被認為是一種有潛力替代鉛基壓電陶瓷的無鉛壓電陶瓷體系. 本文主要綜述近幾年來國內外有關BF-BT基陶瓷的相結構和壓電性能, 以及磁性能等方面的研究進展和動向, 并嘗試分析了該陶瓷體系在實用化的道路上存在的迫切需要解決的問題.

     

  • 圖  1  (1-x)BF-xBT無鉛壓電陶瓷相圖(a)[8]和隨x含量變化的X射線衍射圖(b)[10]

    Figure  1.  Phase diagram (a) of (1-x)BF-xBT lead-free piezoelectric ceramics[8], and X-ray diffraction patterns (b) of (1-x)BF-xBT with different x contents[10]

    圖  2  BF-BT陶瓷中氧化的摻雜量與d33的關系圖

    Figure  2.  Relation between the amount of oxide and d33 in BF-BT ceramics

    圖  3  BF-BT陶瓷中A位離子取代的含量與d33之間的關系圖

    Figure  3.  Relation between the amount of A-site ion substitution and d33 in BF-BT ceramics

    圖  4  BF-BT陶瓷中B位離子取代的含量與d33之間的關系圖

    Figure  4.  Relation between the amount of B-site ion substitution and d33 in BF-BT ceramics

    圖  5  (1-x)BF-xBT陶瓷的磁滯回線(a),剩磁Mr和矯頑場Hcx含量的變化圖(b)[35]

    Figure  5.  M-H loops hysteresis loops (a) of (1-x)BF-xBT (0.24 mol≤x≤0.34 mol) ceramics, and the variations curves (b) of remnant magnetization Mr and coercive field Hc with x for (1-x)BF-xBT ceramics [35]

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Takenaka T, Nagata H. Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc, 2005, 25(12): 2693 doi: 10.1016/j.jeurceramsoc.2005.03.125
    [2] Panda P K. Review: environmental friendly lead-free piezoelectric materials. J Mater Sci, 2009, 44(19): 5049 doi: 10.1007/s10853-009-3643-0
    [3] Li J F, Wang K, Zhu F Y, et al. (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc, 2013, 96(12): 3677 doi: 10.1111/jace.12715
    [4] Wu J G, Xiao D Q, Zhu J G. Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev, 2015, 115(7): 2559 doi: 10.1021/cr5006809
    [5] Wei J, Fu D, Cheng J, et al. Temperature dependence of the dielectric and piezoelectric properties of xBiFeO3-(1-x)BaTiO3 ceramics near the morphotropic phase boundary. J Mater Sci, 2017, 52(18): 10726 doi: 10.1007/s10853-017-1280-6
    [6] Lee M H, Kim D J, Park J S, et al. High-performance lead-free piezoceramics with high Curie temperatures. Adv Mater, 2015, 27(43): 6976 doi: 10.1002/adma.201502424
    [7] Kumar M M, Srinivas A, Suryanarayana S V. Structure property relations in BiFeO3/BaTiO3 solid solutions. J Appl Phys, 2000, 87(2): 855 doi: 10.1063/1.371953
    [8] Leontsev S O, Eitel R E. Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO3 ceramics. J Am Ceram Soc, 2009, 92(12): 2957 doi: 10.1111/j.1551-2916.2009.03313.x
    [9] Wei Y X, Wang X T, Zhu J T, et al. Dielectric, ferroelectric, and piezoelectric properties of BiFeO3-BaTiO3 ceramics. J Am Ceram Soc, 2013, 96(10): 3163 doi: 10.1111/jace.12475
    [10] Zhu L F, Zhang B P, Zhang Z C, et al. Piezoelectric, ferroelectric and ferromagnetic properties of (1-x)BiFeO3-xBaTiO3 lead-free ceramics near morphotropic phase boundary. J Mater Sci Mater Electron, 2018, 29(3): 2307 doi: 10.1007/s10854-017-8147-0
    [11] Kim S, Khanal G P, Nam H W, et al. Structural and electrical characteristics of potential candidate lead-free BiFeO3-BaTiO3 piezoelectric ceramics. J Appl Phys, 2017, 122(16): 164105 doi: 10.1063/1.4999375
    [12] Zhao Y J, Huang R X, Liu R Z, et al. Phase structure of Li0.058(Na0.51K0.49)0.942NbO3 lead-free piezoelectric ceramics. Mater Lett, 2012, 84: 52 doi: 10.1016/j.matlet.2012.06.030
    [13] Rojac T, Kosec M, Budic B, et al. Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J Appl Phys, 2010, 108(7): 074107 doi: 10.1063/1.3490249
    [14] Li Q, Wei J X, Cheng J R, et al. High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics. J Mater Sci, 2017, 52(1): 229 doi: 10.1007/s10853-016-0325-6
    [15] Zhu L F, Zhang B P, Li S, et al. Large piezoelectric responses of Bi(Fe, Mg, Ti)O3-BaTiO3 lead-free piezoceramics near the morphotropic phase boundary. J Alloys Compd, 2017, 727: 382 doi: 10.1016/j.jallcom.2017.08.014
    [16] Chen J G, Cheng J R. Enhanced thermal stability of lead-free high temperature 0.75BiFeO3-0.25BaTiO3 ceramics with excess Bi content. J Alloys Compd, 2014, 589: 115 doi: 10.1016/j.jallcom.2013.11.169
    [17] Zhou C, Yang H, Zhou Q, et al. Effects of Bi excess on the structure and electrical properties of high-temperature BiFeO3-BaTiO3 piezoelectric ceramics. J Mater Sci: Mater Electron, 2013, 24(5): 1685 doi: 10.1007/s10854-012-0996-y
    [18] Huang S G, Li Q N, Yang L, et al. Enhanced piezoelectric properties by reducing leakage current in Co modified 0.7BiFeO3-0.3BaTiO3 ceramics. Ceram Int, 2018, 44(8): 8955 doi: 10.1016/j.ceramint.2018.02.095
    [19] Yang H B, Zhou C R, Liu X Y, et al. Piezoelectric properties and temperature stabilities of Mn-and Cu-modified BiFeO3-BaTiO3 high temperature ceramics. J Eur Ceram Soc, 2013, 33(6): 1177 doi: 10.1016/j.jeurceramsoc.2012.11.019
    [20] Zhou C R, Yang H B, Zhou Q, et al. Dielectric, ferroelectric and piezoelectric properties of La-substituted BiFeO3-BaTiO3 ceramics. Ceram Int, 2013, 39(4): 4307 doi: 10.1016/j.ceramint.2012.11.012
    [21] Guo Y Q, Wang T, He L H, et al. Enhanced ferroelectric and ferromagnetic properties of Er-modified BiFeO3-BaTiO3 lead-free multiferroic ceramics. J Mater Sci Mater Electron, 2016, 27(6): 5741 doi: 10.1007/s10854-016-4487-4
    [22] Wang J, Zhou C R, Li Q N, et al. Simultaneously enhanced piezoelectric properties and depolarization temperature in calcium doped BiFeO3-BaTiO3 ceramics. J Alloys Compd, 2018, 748: 758 doi: 10.1016/j.jallcom.2018.03.174
    [23] Zhou C R, Cen Z Y, Yang H B, et al. Structure, electrical properties of Bi(Fe, Co)O3-BaTiO3 piezoelectric ceramics with improved Curie temperature. Physica B, 2013, 410: 13 doi: 10.1016/j.physb.2012.11.003
    [24] Zheng T, Jiang Z G, Wu J G. Enhanced piezoelectricity in (1-x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: site engineering and wide phase boundary region. Dalton Trans, 2016, 45: 11277 doi: 10.1039/C6DT01805J
    [25] Zhu L F, Zhang B P, Li S, et al. Enhanced piezoelectric properties of Bi(Mg1/2Ti1/2)O3 modified BiFeO3-BaTiO3 ceramics near the morphotropic phase boundary. J Alloys Compd, 2016, 664: 602 doi: 10.1016/j.jallcom.2016.01.003
    [26] Zhou C R, Feteira A, Shan X, et al. Remarkably high-temperature stable piezoelectric properties of Bi(Mg0.5Ti0.5)O3 modified BiFeO3-BaTiO3 ceramics. Appl Phys Lett, 2012, 101(3): 032901 doi: 10.1063/1.4736724
    [27] Zhou Q, Zhou C R, Yang H B, et al. Dielectric, ferroelectric, and piezoelectric properties of Bi(Ni1/2Ti1/2)O3-modified BiFeO3-BaTiO3 ceramics with high Curie temperature. J Am Ceram Soc, 2012, 95(12): 3889 doi: 10.1111/j.1551-2916.2012.05387.x
    [28] Shan X, Zhou C R, Cen Z Y, et al. Bi(Zn1/2Ti1/2)O3 modified BiFeO3-BaTiO3 lead-free piezoelectric ceramics with high temperature stability. Ceram Int, 2013, 39(6): 6707 doi: 10.1016/j.ceramint.2013.01.110
    [29] Zheng Q J, Guo Y Q, Lei F Y, et al. Microstructure, ferroelectric, piezoelectric and ferromagnetic properties of BiFeO3-BaTiO3-Bi(Zn0.5Ti0.5)O3 lead-free multiferroic ceramics. J Mater Sci Mater Electron, 2014, 25(6): 2638 doi: 10.1007/s10854-014-1923-1
    [30] Chen J Y, Zhang B P, Zhu L F, et al. Enhanced insulation resistance and electrical properties of BiFe1-x(Zn0.5Ti0.5)xO3-BaTiO3 lead-free piezoceramics. Ceram Int, 2018, 44(7): 8409 doi: 10.1016/j.ceramint.2018.02.034
    [31] Zhu L F, Zhang B P, Duan J Q, et al. Enhanced piezoelectric and ferroelectric properties of BiFeO3-BaTiO3 lead-free ceramics by optimizing the sintering temperature and dwell time. J Eur Ceram Soc, 2018, 38(10): 3463 doi: 10.1016/j.jeurceramsoc.2018.03.044
    [32] Qin Y F, Yang J, Xiong P, et al. The effects of quenching on electrical properties, and leakage behaviors of 0.67BiFeO3-0.33BaTiO3 solid solutions. J Mater Sci Mater Electron, 2018, 29(9): 7311 doi: 10.1007/s10854-018-8720-1
    [33] Sosnowska I, Zvezdin A K. Origin of the long period magnetic ordering in BiFeO3. J Magn Magn Mater, 1995, 140-144: 167 doi: 10.1016/0304-8853(94)01120-6
    [34] Gippius A A, Khozeev D F, Morozova E N, et al. Observation of spin modulated magnetic structure at Bi-and Fe-sites in BiFeO3 by nuclear magnetic resonance. Phys Status Solidi A, 2003, 196(1): 221 doi: 10.1002/pssa.200306391
    [35] Zhu L F, Zhang B P, Zhang Z C, et al. Piezoelectric, ferroelectric and ferromagnetic properties of (1-x)BiFeO3-xBaTiO3 lead-free ceramics near morphotropic phase boundary. J Mater Sci Mater Electron, 2018, 29(3): 2307 doi: 10.1007/s10854-017-8147-0
    [36] Dai Z H, Liu L, Ying G B, et al. Structural, dielectric and magnetic properties of Mn modified xBiFeO3-(1-x)BaTiO3 ceramics. J Magn Magn Mater, 2017, 434: 10 doi: 10.1016/j.jmmm.2016.10.131
    [37] Liu X H, Xu Z, Qu S B, et al. Ferroelectric and ferromagnetic properties of Mn-doped 0.7BiFeO3-0.3BaTiO3 solid solution. Ceram Int, 2008, 34(4): 797 doi: 10.1016/j.ceramint.2007.09.029
  • 加載中
圖(5)
計量
  • 文章訪問數:  1262
  • HTML全文瀏覽量:  546
  • PDF下載量:  86
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-06-25
  • 刊出日期:  2019-08-01

目錄

    /

    返回文章
    返回