Corrosion behavior of X100 pipeline steel and its heat-affected zones in simulated Korla soil solution under alternating current interference
-
摘要: 通過Gleeble熱模擬實驗機模擬了X100管線鋼的粗晶熱影響區(CGHAZ)及再熱臨界粗晶熱影響區(ICCGHAZ)微觀組織。采用電化學測試、浸泡實驗及表面分析技術研究了交流干擾下X100管線鋼母材、CGHAZ及ICCGHAZ在庫爾勒土壤溶液中的腐蝕行為。結果表明:交流干擾下X100管線鋼母材、CGHAZ及ICCGHAZ都表現為活性溶解,平均腐蝕速率隨交流電流密度的增大而增加。交流干擾造成的極化電位振蕩幅值及微觀組織對X100管線鋼母材、CGHAZ及ICCGHAZ的平均腐蝕速率和腐蝕形貌有著重要影響。在5 mA·cm?2交流電流密度干擾下,母材的腐蝕電位最負、平均腐蝕速率最大,ICCGHAZ的腐蝕電位最正、平均腐蝕速率最小,CGHAZ的腐蝕電位及平均腐蝕速率都居中;在20 mA·cm?2及50 mA·cm?2交流電流密度干擾下,ICCGHAZ腐蝕電位最負、平均腐蝕速率最大,母材的腐蝕電位最正、平均腐蝕速率最小,CGHAZ的腐蝕電位及平均腐蝕速率都仍居中。在20 mA·cm?2交流電流密度交流干擾下,X100管線鋼發生局部腐蝕,CGHAZ、ICCGHAZ發生明顯的晶界腐蝕,GCHAZ晶界腐蝕形貌呈縫隙狀、ICCGHAZ晶界腐蝕形貌為連續孔洞。Abstract: In recent years, many accidents caused by alternating current (AC) corrosion have been reported. AC corrosion has become a serious potential damage to buried steel pipelines. The X100 pipeline steel is a very promising material for long-distance gas pipelines, and Korla soil is a typical saline-alkali soil of West China. The coarse-grained heat-affected zone (CGHAZ) and the intercritically reheated coarse-grained heat-affected zone (ICCGHAZ) were simulated by a Gleeble thermomechanical processing machine through different thermal cycle times, peak temperatures, and cooling rates. Electrochemical corrosion measurements, immersion experiments and surface analysis techniques were used to characterize the corrosion behavior of the base metal, CGHAZ, and ICCGHAZ of the X100 pipeline steel in simulated Korla soil solution under AC interference. The X100 pipeline steel base metal, CGHAZ, and ICCGHAZ exhibited active dissolution in the simulated Korla soil solution under AC interference, and the average corrosion rate increased with the increase in AC density. The amplitude of the polarization potential oscillation caused by AC interference and the microstructure had an important influence on the corrosion rate and corrosion morphology of the X100 pipeline steel base metal, CGHAZ and ICCGHAZ. Under the interference of 5 mA·cm?2 AC density, the X100 pipeline steel base material shows the most negative corrosion potential and the largest average corrosion rate, while the ICCGHAZ shows the most positive corrosion potential and the smallest average corrosion rate. Under the interferences of 20 and 50 mA·cm?2 AC densities, the ICCGHAZ of X100 pipeline steel shows the most negative corrosion potential and the largest average corrosion rate, while the base metal shows the most positive corrosion potential and the smallest average corrosion rate. Under the interference of 20 mA·cm?2 AC density, the X100 pipeline steel is locally corroded. CGHAZ and ICCGHAZ have obvious grain boundary corrosion, whereby GCHAZ grain boundary corrosion morphology is slit-shaped, and ICCGHAZ grain boundary corrosion morphology is continuous pores.
-
圖 5 X100管線鋼母材和熱影響區在庫爾勒土壤模擬液中的腐蝕電位。(a)1 Hz頻率測得;(b)在交流電流密度為5 mA·cm?2時2000 Hz頻率測得;(c)在交流電流密度為20 mA·cm?2時2000 Hz頻率測得;(d)在交流電流密度為50 mA·cm?2時2000 Hz頻率測得
Figure 5. Corrosion potentials of the samples in simulated Korla soil solution: (a) measured by 1 Hz frequency; (b) measured by 2000 Hz under AC density of 5 mA·cm?2; (c) measured by 2000 Hz under AC density of 20 mA·cm?2; (d) measured by 2000 Hz under AC density of 50 mA·cm?2
圖 9 試樣表面腐蝕形貌SEM圖。(a) 腐蝕較輕的CGHAZ;(b)腐蝕較輕的ICCGHAZ;(c)腐蝕較輕的母材;(d)腐蝕較嚴重的CGHAZ;(e)腐蝕較嚴重的ICCGHAZ;(f)腐蝕較嚴重的母材
Figure 9. SEM surface micrographs: (a) CGHAZ with slight corrosion; (b) ICCGHAZ with slight corrosion; (c) base steel with slight corrosion; (d) CGHAZ with serious corrosion; (e) ICCGHAZ with serious corrosion; (f) base steel with serious corrosion
259luxu-164 -
參考文獻
[1] Du W, Li H L, Wang H T, et al. Research status of high-performance oil and gas pipelines in China and abroad. Oil Gas Storage Transp, 2016, 35(6): 577杜偉, 李鶴林, 王海濤, 等. 國內外高性能油氣輸送管的研發現狀. 油氣儲運, 2016, 35(6):577 [2] Witek M. Possibilities of using X80, X100, X120 high-strength steels for onshore gas transmission pipelines. J Nat Gas Sci Eng, 2015, 27: 374 doi: 10.1016/j.jngse.2015.08.074 [3] Maes M A, Dann M, Salama M M. Influence of grade on the reliability of corroding pipelines. Reliab Eng Syst Saf, 2008, 93(3): 447 doi: 10.1016/j.ress.2006.12.009 [4] Liu C H, Liu W, Lu M X. Comparative study on corrosion behavior of X60 steel and its welding heat-affected zone. Corros Sci Prot Technol, 2008, 20(3): 206劉成虎, 柳偉, 路民旭. X60鋼及其焊接熱影響區的腐蝕行為對比研究. 中國腐蝕與防護技術, 2008, 20(3):206 [5] Fan Z, Liu J Y, Li S L, et al. Microstructure and seawater corrosion to welding joint of X70 pipeline steel. J Southwest Petrol Univ Sci Technol Ed, 2009, 31(5): 171范舟, 劉建儀, 李士倫, 等. X70管線鋼焊接接頭組織及其海水腐蝕規律. 西南石油大學學報: 自然科學版, 2009, 31(5):171 [6] Mohammadi F, Eliyan F F, Alfantazi A. Corrosion of simulated weld HAZ of API X-80 pipeline steel. Corros Sci, 2012, 63: 323 doi: 10.1016/j.corsci.2012.06.014 [7] Zhao W, Zou Y, Zou Z D, et al. The corrosion characterization in simulated heat-affected zones of X80 pipeline steel in near-neutral solution. Int J Electrochem Sci, 2015, 10(11): 9725 [8] Shi C W, Zhang Y B, Liu P, et al. Effects of second thermal cycles on microstructure and CO2 corrosion behavior of X80 pipeline steel. Int J Electrochem Sci, 2018, 13(3): 2412 [9] Zhang M, Li L, Cheng K K, et al. Corrosion behavior of X100 pipeline steel welded joint in acidic environment. Ordnance Mater Sci Eng, 2018, 41(6): 1張敏, 李樂, 程康康, 等. X100管線鋼焊接接頭在酸性環境中的腐蝕行為分析. 兵器材料科學與工程, 2018, 41(6):1 [10] Eliyan F F, Alfantazi A. Corrosion of the heat-affected zones (HAZs) of API-X100 pipeline steel in dilute bicarbonate solutions at 90 ℃–an electrochemical evaluation. Corros Sci, 2013, 74: 297 doi: 10.1016/j.corsci.2013.05.003 [11] Eliyan F F, Icre F, Alfantazi A. Passivation of HAZs of API‐X100 pipeline steel in bicarbonate‐carbonate solutions at 298 K. Mater Corros, 2014, 65(12): 1162 doi: 10.1002/maco.201206985 [12] Papadakis G A. Major hazard pipelines: a comparative study of onshore transmission accidents. J Loss Prev Process Ind, 1999, 12(1): 91 doi: 10.1016/S0950-4230(98)00048-5 [13] Mustapha A, Charles E A, Hardie D. Evaluation of environment-assisted cracking susceptibility of a grade X100 pipeline steel. Corros Sci, 2012, 54: 5 doi: 10.1016/j.corsci.2011.08.030 [14] Kulman F E. Effects of alternating currents in causing corrosion. Corrosion, 1961, 17(3): 34 doi: 10.5006/0010-9312-17.3.34 [15] Gummow R A, Wakelin R G, Segall S M. AC corrosion― ―a new threat to pipeline integrity? // 1996 1st International Pipeline Conference. Calgary, 1996: 443 [16] Fu Y Q, Wang X T, Chen S L. Stray current detection and treatment for buried natural gas pipeline of Nanlang segment. Surf Technol, 2016, 45(2): 22符耀慶, 王秀通, 陳勝利. 南朗段埋地天然氣管道雜散電流檢測與治理. 表面技術, 2016, 45(2):22 [17] Hanson H R, Smart J. AC corrosion on a pipeline located in an HVAC utility corridor // Corrosion 2004. New Orleans, 2004: NACE-04209 [18] Liang P, Du C W, Li X G. Simulating and accelerating properties of Kuerle soil simulated solution. J Chin Soc Corros Prot, 2011, 31(2): 97梁平, 杜翠薇, 李曉剛. 庫爾勒土壤模擬溶液的模擬性和加速性研究. 中國腐蝕與防護學報, 2011, 31(2):97 [19] Goidanich S, Lazzari L, Ormellese M. AC corrosion. Part 2: parameters influencing corrosion rate. Corros Sci, 2010, 52(3): 916 doi: 10.1016/j.corsci.2009.11.012 [20] Lazzari L, Goidanich S, Ormellese M, et al. Influence of AC on corrosion kinetics for carbon steel, zinc and copper // CORROSION 2005. Houston, Texas, 2005: NACE-05189 [21] Wang X L, Yan M C, Shu Y, et al. AC interference corrosion of pipeline steel beneath delaminated coating with holiday. J Chin Soc Corros Prot, 2017, 37(4): 341 doi: 10.11902/1005.4537.2017.118王曉霖, 閆茂成, 舒韻, 等. 破損涂層下管線鋼的交流電干擾腐蝕行為. 中國腐蝕與防護學報, 2017, 37(4):341 doi: 10.11902/1005.4537.2017.118 [22] Wang X H, Song X T, Chen Y C, et al. Corrosion behavior of X70 and X80 pipeline steels in simulated soil solution. Int J Electrochem Sci, 2018, 13(7): 6436 [23] Wang X H, Tang X H, Wang L W, et al. Synergistic effect of stray current and stress on corrosion of API X65 steel. J Nat Gas Sci Eng, 2014, 21: 474 doi: 10.1016/j.jngse.2014.09.007 [24] Wang X H, Yang G Y, Huang H, et al. AC stray current corrosion law of buried steel pipeline. J Chin Soc Corros Prot, 2013, 33(4): 293王新華, 楊國勇, 黃海, 等. 埋地鋼質管道交流雜散電流腐蝕規律研究. 中國腐蝕與防護學報, 2013, 33(4):293 [25] Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment. Acta Metall Sin, 2017, 53(5): 575 doi: 10.11900/0412.1961.2016.00500萬紅霞, 宋東東, 劉智勇, 等. 交流電對X80鋼在近中性環境中腐蝕行為的影響. 金屬學報, 2017, 53(5):575 doi: 10.11900/0412.1961.2016.00500 [26] Zhu M, Du C W, Li X G, et al. Effects of alternating current (AC) frequency on corrosion behavior of X80 pipeline steel in a simulated acid soil solution. J Chin Soc Corros Prot, 2014, 34(3): 225 doi: 10.11902/1005.4537.2013.127朱敏, 杜翠薇, 李曉剛, 等. 交流電頻率對X80管線鋼在酸性土壤模擬溶液中腐蝕行為的影響. 中國腐蝕與防護學報, 2014, 34(3):225 doi: 10.11902/1005.4537.2013.127 [27] Li X D, Li X, Wang S X, et al. Influence of cooling rate on microstructure and impact properties of ICCGHAZ of X100 pipeline steel during the second pass thermal cycle. Heat Treat Met, 2017, 42(9): 66李學達, 李霞, 王世新, 等. 第二道次焊接熱循環冷卻速度對X100管線鋼臨界再熱粗晶區組織及沖擊性能的影響. 金屬熱處理, 2017, 42(9):66 [28] Lalvani S B, Lin X. A revised model for predicting corrosion of materials induced by alternating voltages. Corros Sci, 1996, 38(10): 1709 doi: 10.1016/S0010-938X(96)00065-0 [29] Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions. Corros Sci, 2014, 85: 304 doi: 10.1016/j.corsci.2014.04.030 [30] Li M C, Cheng Y F. Mechanistic investigation of hydrogen-enhanced anodic dissolution of X-70 pipe steel and its implication on near-neutral pH SCC of pipelines. Electrochim Acta, 2007, 52(28): 8111 doi: 10.1016/j.electacta.2007.07.015 -