Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: a review
-
摘要: 先進的相變儲能材料是推動儲能技術發展的核心和關鍵,在促進新能源開發和提高能源利用率中起著至關重要的作用。因在相變過程中具有高儲能密度和小體積變化等優勢,相變材料中應用最多的是固?液相變材料。然而在其相變過程中會發生固態向液態的轉變,為了避免其在液相狀態下的泄露,需要加以定形才能使用。多孔基復合相變材料在有效防止固液相變發生泄露的同時,還需兼顧定形復合相變材料傳熱性能的提升。本文針對這個問題進行了大量的調研,對近年來國內外在提高多孔基定形復合相變材料傳熱性能方面的研究進行了綜合分析,介紹了三種強化傳熱的方法,分別是使用高導熱多孔材料做載體材料、摻雜高導熱納米材料做添加劑以及構筑高導熱多級結構多孔材料,并對提升復合相變材料傳熱性能研究方法的前景作了展望。Abstract: How to realize the efficient use of the renewable energy sources is a present-day challenge to the technologists and has become an important issue in their large scale applications. Energy storage not only reduces the mismatch between supply and demand but also improves the performance and reliability of energy systems and plays an important role in conserving the energy. Current energy storage techniques mainly include sensible heat storage, latent heat storage and chemical reaction heat storage. The researchers place emphasis on the latent heat storage due to its advantages of high heat storage density, little temperature fluctuation and easily controllable utility system. In principle, phase change materials (PCMs) are used for the latent heat storage to absorb and release large amounts of latent heat during their phase change process. Therefore, PCMs are the key factor for the development of latent energy storage technology and play the crucial role in exploring new energy and improving energy utilization. The solid-liquid transition is more efficient compared with the other transformations due to its high latent heat density and small volume change. However, the leakage of solid-liquid PCMs above the melting point from the thermal storage system still hinders their practical applications. Considerable efforts have been devoted to introducing the porous support and development of shape-stabilized composite PCMs to address this technical issue. During the melting or solidifying processes, the PCMs store or release latent heat, while the support materials confine the melted phase from leaking and keep the whole system in the solid state. Moreover, low thermal conductivity of PCMs may degrade the performance for energy storage and thermal regulation during the melting and freezing cycles and restrict their final applications. Therefore, the necessity to enhance thermal conductivity of porous shape-stabilized composite PCMs is evident. In this paper, the recent researches on the enhancement of conductivity of porous shape-stabilized composite PCMs were reviewed. We studied the thermal conductivity enhancement techniques, which included impregnation of PCMs into porous materials with high thermal conductivity, introducing of high conductivity nano-materials and porous support materials into PCMs, construction of hybrid composite for shape stabilized phase change materials. The evaluation of each thermal conductivity enhancement technique was discussed. Finally, we had provided a brief outlook and future challenges in enhancing thermal conductivity of porous shape-stabilized composite PCMs.
-
圖 1 不同孔徑泡沫金屬及石蠟/泡沫金屬基復合相變材料的照片. (a) 泡沫鎳;(b) 石蠟/泡沫金屬鎳復合相變材料;(c) 泡沫銅;(d) 石蠟/泡沫金屬銅復合相變材料 (I:5PPI,II:10PPI,III:25PPI)[13]
Figure 1. Images of metal foam and paraffin/metal foam composite PCMs with different pore sizes: (a) nickel foams; (b) paraffin/nickel foam composite PCMs; (c) copper foams; (d) paraffin/copper foam composite PCMs (I: 5PPI, II: 10PPI, III: 25PPI)[13]
圖 3 載體及石墨烯/Al2O3復合材料的結構和熱性能圖. (a) 大孔氧化鋁,石墨烯包覆的多孔氧化鋁,十八酸填充的多孔氧化鋁和十八酸填充的石墨烯包覆的多孔氧化鋁的照片;(b) 石墨烯包覆的多孔氧化鋁的掃描電鏡圖;(c) 十八酸和十八酸填充的石墨烯包覆的多孔氧化鋁的差示掃描量熱曲線圖;(d~f) 十八酸填充的多孔氧化鋁和十八酸填充的石墨烯包覆的多孔氧化鋁的熱傳輸演化圖[49]
Figure 3. Structural and thermal properties of the carrier and graphene/Al2O3 composites: (a) photographs of PAO, G?PAO, SA?PAO, and SA?G?PAO;(b) SEM image of G?PAO; (c) DSC curves of SA and SA?G?PAO composite; (d–f) thermal transport evolution of SA?PAO and SA?G?PAO[49]
表 1 使用高導熱多孔材料做載體材料強化復合相變材料的傳熱性能
Table 1. Enhanced thermal property by impregnation of PCMs into porous materials with high thermal conductivity
復合相變材料體系 復合相變材料
熱導率/(W?m?1?K?1)熱導率提升幅度/%
(與純相變材料相比)參考文獻 載體材料 相變材料 N摻雜的多孔碳 聚乙二醇2000 0.41 51.9 [3] 泡沫金屬鎳 碳酸鉀 17.59 — [11] 泡沫金屬鎳 碳酸鈉 20.38 — [11] 泡沫金屬鎳 氫氧化鈉 13.21 — [11] 泡沫金屬鎳 氫氧化鋰 14.57 — [11] 泡沫金屬鎳 碳酸鋰 24.7 — [11] 泡沫金屬鎳 石蠟 1.20 293 [13] 泡沫金屬銅 石蠟 4.90 1507 [13] 膨脹石墨 石蠟 0.82 272.7 [15] 膨脹石墨 豆蔻酸?棕櫚酸?硬脂酸 2.51 900 [18] 氧化石墨烯 石蠟 0.985 223 [20] 還原氧化石墨烯 脂肪酸 — 150 [21] 碳納米管 癸酸?月桂酸?棕櫚酸 0.67 — [27] 碳納米管海綿 石蠟 1.20 500 [28] 活性碳 十八烷 0.26 40.1 [30] 納米多孔碳 聚乙二醇4000 0.42 50 [32] 氮摻雜多孔碳 聚乙二醇2000 0.41 52 [33] 碳量子點 聚乙二醇8000 0.94 236 [34] 介孔碳 石蠟 0.35 125 [36] 多孔碳 十六醇 0.41 120 [35] 碳微管/石墨烯 十八酸 — 330 [37] 氧化石墨烯?石墨烯納米片氣凝膠 聚乙二醇1000 1.43 361 [40] 還原氧化石墨烯@多孔碳 十八酸 0.60 27.7 [41] 泡沫金剛石 石蠟 6.70 2580 [42] 表 2 摻雜高導熱納米材料做添加劑強化復合相變材料的傳熱性能
Table 2. Enhanced thermal property by introducing of high conductivity nano-materials and porous support materials into PCMs
259luxu-164 -
參考文獻
[1] Zhong L M, Yang M, Luan Y, et al. Preparation and properties of paraffin/SiO2 composite phase change material. Chin J Eng, 2015, 37(7): 936鐘麗敏, 楊穆, 欒奕, 等. 石蠟/二氧化硅復合相變材料的制備及其性能. 工程科學學報, 2015, 37(7):936 [2] Li W Q, Hou R F, Wan H, et al. A new strategy for enhanced latent heat energy storage with microencapsulated phase change material saturated in metal foam. Sol Energy Mater Sol Cells, 2017, 171: 197 doi: 10.1016/j.solmat.2017.06.037 [3] Atinafu D G, Dong W J, Huang X B, et al. One-pot synthesis of light-driven polymeric composite phase change materials based on N-doped porous carbon for enhanced latent heat storage capacity and thermal conductivity. Sol Energy Mater Sol Cells, 2018, 179: 392 doi: 10.1016/j.solmat.2018.01.035 [4] Ji H X, Sellan D P, Pettes M T, et al. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ Sci, 2014, 7(3): 1185 doi: 10.1039/C3EE42573H [5] Kenisarin M, Mahkamov K. Passive thermal control in residential buildings using phase change materials. Renewable Sustainable Energy Rev, 2016, 55: 371 doi: 10.1016/j.rser.2015.10.128 [6] Mondal S. Phase change materials for smart textiles-an overview. Appl Therm Eng, 2008, 28(11-12): 1536 doi: 10.1016/j.applthermaleng.2007.08.009 [7] Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phase change materials and applications. Renewable Sustainable Energy Rev, 2009, 13(2): 318 doi: 10.1016/j.rser.2007.10.005 [8] Ibrahim N I, Al-Sulaiman F A, Rahman S, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renewable Sustainable Energy Rev, 2017, 74: 26 doi: 10.1016/j.rser.2017.01.169 [9] Fleming E, Wen S Y, Shi L, et al. Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit. Int J Heat Mass Transfer, 2015, 82: 273 doi: 10.1016/j.ijheatmasstransfer.2014.11.022 [10] Zhang P, Meng Z N, Zhu H, et al. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam. Appl Energy, 2017, 185: 1971 doi: 10.1016/j.apenergy.2015.10.075 [11] Qi X J, Wang H, Wang S L, et al. Preparation and research of composite heat storage material with metal Ni and molten salts. Ind Heat, 2005, 34(1): 8 doi: 10.3969/j.issn.1002-1639.2005.01.003祁先進, 王華, 王勝林, 等. 金屬基與熔融鹽復合蓄熱材料的制備與性能研究. 工業加熱, 2005, 34(1):8 doi: 10.3969/j.issn.1002-1639.2005.01.003 [12] Sheng Q, Xing Y M, Wang Z. Preparation and performance analysis of metal foam composite phase change material. CIESC J, 2013, 64(10): 3565盛強, 邢玉明, 王澤. 泡沫金屬復合相變材料的制備與性能分析. 化工學報, 2013, 64(10):3565 [13] Xiao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy, 2013, 112: 1357 doi: 10.1016/j.apenergy.2013.04.050 [14] Zhang Z G, Wang X Z, Fang X M. Structure and thermal properties of composite paraffin/expanded graphite phase change material. J South China Univ Technol Nat Sci Ed, 2006, 34(3): 1張正國, 王學澤, 方曉明. 石蠟/膨脹石墨復合相變材料的結構與熱性能. 華南理工大學學報: 自然科學版, 2006, 34(3):1 [15] Sari A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng, 2007, 27(8-9): 1271 doi: 10.1016/j.applthermaleng.2006.11.004 [16] Zhong Y J, Li S Z, Wei X H, et al. Heat transfer enhancement of paraffin wax using compressed expanded natural graphite for thermal energy storage. Carbon, 2010, 48(1): 300 doi: 10.1016/j.carbon.2009.09.033 [17] Zhang Z G, Zhang N, Peng J, et al. Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy, 2012, 91(1): 426 doi: 10.1016/j.apenergy.2011.10.014 [18] Yang X J, Yuan Y P, Zhang N, et al. Preparation and properties of myristic?palmitic?stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy, 2014, 99: 259 doi: 10.1016/j.solener.2013.11.021 [19] Zou D Q, Ma X F, Liu X S, et al. Research progress on graphene in phase change materials. Chem Ind Eng Prog, 2017, 36(5): 1743鄒得球, 馬先鋒, 劉小詩, 等. 石墨烯在相變材料中的研究進展. 化工進展, 2017, 36(5):1743 [20] Mehrali M, Latibari S T, Mehrali M, et al. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Convers Manage, 2013, 67: 275 doi: 10.1016/j.enconman.2012.11.023 [21] Akhiani A R, Mehrali M, Latibari S T, et al. One-step preparation of form-stable phase change material through self-assembly of fatty acid and graphene. J Phys Chem C, 2015, 119(40): 22787 doi: 10.1021/acs.jpcc.5b06089 [22] Wang C Y, Feng L L, Yang H Z, et al. Graphene oxide stabilized polyethylene glycol for heat storage. Phys Chem Chem Phys, 2012, 14(38): 13233 doi: 10.1039/c2cp41988b [23] Wang C Y, Wang W, Li G L, et al. The influence of interactions between polyethylene glycol and graphene oxide in shape-stabilized PCMs on their phase change behaviors. Adv Mater Res, 2013, 800: 459 doi: 10.4028/www.scientific.net/AMR.800.459 [24] Wang C Y, Li G L, Wang W, et al. Influence of surface performance of supporting materials on phase change behavior of shape-stabilized phase change materials. J Shenyang Univ Technol, 2014, 36(1): 39 doi: 10.7688/j.issn.1000-1646.2014.01.08王崇云, 李國玲, 王維, 等. 載體材料表面性質對定形相變材料相變行為的影響. 沈陽工業大學學報, 2014, 36(1):39 doi: 10.7688/j.issn.1000-1646.2014.01.08 [25] Ye S B, Zhang Q L, Hu D D, et al. Core-shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage. J Mater Chem A, 2015, 3(7): 4018 doi: 10.1039/C4TA05448B [26] Zhang L B, Li R Y, Tang B, et al. Solar-thermal conversion and thermal energy storage of graphene foam-based composites. Nanoscale, 2016, 8(30): 14600 doi: 10.1039/C6NR03921A [27] Meng X, Zhang H Z, Sun L X, et al. Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials. J Therm Anal Calorim, 2013, 111(1): 377 doi: 10.1007/s10973-012-2349-8 [28] Chen L J, Zou R Q, Xia W, et al. Electro-and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges. ACS Nano, 2012, 6(12): 10884 doi: 10.1021/nn304310n [29] Feng L L, Zhao W, Zheng J, et al. The shape-stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices (AC, SBA-15 and MCM-41). Sol Energy Mater Sol Cells, 2011, 95(12): 3550 doi: 10.1016/j.solmat.2011.08.020 [30] Khadiran T, Hussein M Z, Zainal Z, et al. Activated carbon derived from peat soil as a framework for the preparation of shape-stabilized phase change material. Energy, 2015, 82: 468 doi: 10.1016/j.energy.2015.01.057 [31] Luan Y, Yang M, Ma Q Q, et al. Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties. J Mater Chem A, 2016, 4: 7641 doi: 10.1039/C6TA01676F [32] Tang J, Yang M, Dong W J, et al. Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity. RSC Adv, 2016, 6(46): 40106 doi: 10.1039/C6RA04059D [33] Atinafu D G, Dong W J, Hou C M, et al. A facile one-step synthesis of porous N-doped carbon from MOF for efficient thermal energy storage capacity of shape-stabilized phase change materials. Mater Today Energy, 2019, 12: 239 doi: 10.1016/j.mtener.2019.01.011 [34] Chen X, Gao H Y, Yang M, et al. Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting. Nano Energy, 2018, 49: 86 doi: 10.1016/j.nanoen.2018.03.075 [35] Wang J W, Jia X L, Atinafu D G, et al. Synthesis of “graphene-like” mesoporous carbons for shape-stabilized phase change materials with high loading capacity and improved latent heat. J Mater Chem A, 2017, 5(46): 24321 doi: 10.1039/C7TA05594C [36] Atinafu D G, Dong W J, Wang C, et al. Synthesis of porous carbon from cotton using an Mg(OH)2 template for form-stabilized phase change materials with high encapsulation capacity, transition enthalpy and reliability. J Mater Chem A, 2018, 6(19): 8969 doi: 10.1039/C8TA01672K [37] Bi H, Huang H N, Xu F, et al. Carbon microtube/graphene hybrid structures for thermal management applications. J Mater Chem A, 2015, 3(36): 18706 doi: 10.1039/C5TA05115K [38] Kholmanov I, Kim J, Ou E, et al. Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano, 2015, 9(12): 11699 doi: 10.1021/acsnano.5b02917 [39] Yin Z Y, Huang Z H, Wen R L, et al. Preparation and thermal properties of phase change materials based on paraffin with expanded graphite and carbon foams prepared from sucroses. RSC Adv, 2016, 6(97): 95085 doi: 10.1039/C6RA13758J [40] Yang J, Qi G Q, Liu Y, et al. Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape stabilization and light to thermal energy storage. Carbon, 2016, 100: 693 doi: 10.1016/j.carbon.2016.01.063 [41] Li A, Dong C, Dong W J, et al. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance. ACS Appl Mater Interfaces, 2018, 10(38): 32093 doi: 10.1021/acsami.8b09541 [42] Zhang L, Zhou K C, Wei Q P, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage. Appl Energy, 2019, 233-234: 208 doi: 10.1016/j.apenergy.2018.10.036 [43] Tang B T, Qiu M G, Zhang S F. Thermal conductivity enhancement of PEG/SiO2 composite PCM byin situ Cu doping. Sol Energy Mater Sol Cells, 2012, 105: 242 doi: 10.1016/j.solmat.2012.06.012 [44] Qian T T, Li J H, Min X, et al. Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage. J Mater Chem A, 2015, 3(16): 8526 doi: 10.1039/C5TA00309A [45] Zhang Y, Wang J S, Qiu J J, et al. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity. Appl Energy, 2019, 237: 83 doi: 10.1016/j.apenergy.2018.12.075 [46] Liu C H, Xu Z, Song Y, et al. A novel shape-stabilization strategy for phase change thermal energy storage. J Mater Chem A, 2019, 7(14): 8194 doi: 10.1039/C9TA01496A [47] Zhou M, Lin T Q, Huang F Q, et al. Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv Funct Mater, 2013, 23(18): 2263 doi: 10.1002/adfm.201202638 [48] Xu B W, Li Z J. Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy, 2014, 72: 371 doi: 10.1016/j.energy.2014.05.049 [49] Karaipekli A, Bi?er A, Sari A, et al. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manage, 2017, 134: 373 doi: 10.1016/j.enconman.2016.12.053 [50] Karaman S, Karaipekli A, Sari A, et al. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells, 2011, 95(7): 1647 doi: 10.1016/j.solmat.2011.01.022 [51] Wei H T, Li X Q. Preparation and characterization of a lauric-myristic-stearic acid/Al2O3-loaded expanded vermiculite composite phase change material with enhanced thermal conductivity. Sol Energy Mater Sol Cells, 2017, 166: 1 [52] Wang W L, Yang X X, Fang Y T, et al. Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-aluminum nitride. Appl Energy, 2009, 86(7-8): 1196 doi: 10.1016/j.apenergy.2008.10.020 [53] Wang J J, Huang X B, Gao H Y, et al. Construction of CNT@ Cr?MIL?101?NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity. Chem Eng J, 2018, 350: 164 doi: 10.1016/j.cej.2018.05.190 [54] Li A, Wang J J, Dong C, et al. Core-sheath structural carbon materials for integrated enhancement of thermal conductivity and capacity. Appl Energy, 2018, 217: 369 doi: 10.1016/j.apenergy.2017.12.106 -