<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

電子皮膚新型材料與性能研究進展

萬甦偉 陳家林 李世鴻 李俊鵬

萬甦偉, 陳家林, 李世鴻, 李俊鵬. 電子皮膚新型材料與性能研究進展[J]. 工程科學學報, 2020, 42(6): 704-714. doi: 10.13374/j.issn2095-9389.2019.07.18.001
引用本文: 萬甦偉, 陳家林, 李世鴻, 李俊鵬. 電子皮膚新型材料與性能研究進展[J]. 工程科學學報, 2020, 42(6): 704-714. doi: 10.13374/j.issn2095-9389.2019.07.18.001
WAN Su-wei, CHEN Jia-lin, LI Shi-hong, LI Jun-peng. Research progress on new materials and properties of electronic skin[J]. Chinese Journal of Engineering, 2020, 42(6): 704-714. doi: 10.13374/j.issn2095-9389.2019.07.18.001
Citation: WAN Su-wei, CHEN Jia-lin, LI Shi-hong, LI Jun-peng. Research progress on new materials and properties of electronic skin[J]. Chinese Journal of Engineering, 2020, 42(6): 704-714. doi: 10.13374/j.issn2095-9389.2019.07.18.001

電子皮膚新型材料與性能研究進展

doi: 10.13374/j.issn2095-9389.2019.07.18.001
基金項目: 國家自然科學基金資助項目(51771084);云南省科技計劃資助項目(2016DC032,2018ZE001)
詳細信息
    通訊作者:

    E-mail:lijunpeng@ipm.com.cn

  • 中圖分類號: TP212

Research progress on new materials and properties of electronic skin

More Information
  • 摘要: 電子皮膚作為一種柔性觸覺仿生傳感器已經廣泛地應用于人體生理參數檢測與機器人觸覺感知等領域。基于金屬和半導體材料的傳統電子皮膚觸覺傳感器,由于柔韌性和可穿戴性差,已經難以滿足實際使用中對拉伸性、便攜性的要求。得益于柔性材料、制造工藝和傳感技術的快速發展,近年來聚二甲基硅氧烷、碳納米管、石墨烯等新材料被用于制備或支撐電子皮膚傳感器,使電子皮膚在性能上更趨于人類皮膚。本文分析討論了電子皮膚新材料以及應用于電子皮膚當中的傳感技術,重點總結了近年來電子皮膚在可拉伸/壓縮性、生物相容性、生物降解性、自供電性、自修復性、溫度敏感性以及多功能集成等方面的研究進展,展望了未來電子皮膚新性能的研究方向以及實現大面積、低成本、多種功能集成電子皮膚傳感器陣列的可能途徑。

     

  • 圖  1  傳感方式原理圖。(a)壓阻效應;(b)電容效應;(c)壓電效應[41]

    Figure  1.  Schematic images of transduction methods: (a) piezoresistivity; (b) capacitance; (c) piezoelectricity[41]

    圖  2  生物降解傳感器[15]

    Figure  2.  Biodegradation sensor[15]

    圖  3  一種本質上可自愈的導電復合材料。(a)與LED燈串聯的導電復合材料;(b)通過復合膜電阻測量的電自愈[16]

    Figure  3.  An intrinsically self-healing conductive composite: (a) an LED connected in series with the conductive composite; (b) electrical self-healing as measured through the resistance of the composite film[16]

    圖  4  多功能表皮電子系統。(a)未變形;(b)壓縮;(c)拉伸[66]

    Figure  4.  Multifunctional epidermal electronic system: (a) undeformed; (b) compressed; (c) stretched[66]

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Amjadi M, Kyung K U, Park I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater, 2016, 26(11): 1678 doi: 10.1002/adfm.201504755
    [2] Bae G Y, Pak S W, Kim D, et al. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater, 2016, 28(26): 5300 doi: 10.1002/adma.201600408
    [3] Trung T Q, Lee N E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater, 2016, 28(22): 4338 doi: 10.1002/adma.201504244
    [4] Wang X D, Zhang H L, Dong L, et al. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv Mater, 2016, 28(15): 2896 doi: 10.1002/adma.201503407
    [5] Xu S, Zhang Y H, Jia L, et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science, 2014, 344(6179): 70 doi: 10.1126/science.1250169
    [6] Zhong W B, Liu Q Z, Wu Y Z, et al. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability. Nanoscale, 2016, 8(24): 12105 doi: 10.1039/C6NR02678H
    [7] Hammock M L, Chortos A, Tee B C K, et al. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater, 2013, 25(42): 5997 doi: 10.1002/adma.201302240
    [8] Wu Z C, Chen Z H, Du X, et al. Transparent, conductive carbon nanotube films. Science, 2004, 305(5688): 1273 doi: 10.1126/science.1101243
    [9] Opatkiewicz J P, LeMieux M C, Liu D, et al. Using nitrile functional groups to replace amines for solution-deposited single-walled carbon nanotube network films. ACS Nano, 2012, 6(6): 4845 doi: 10.1021/nn300124y
    [10] Small W R, in het Panhuis M. Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. Small, 2007, 3(9): 1500 doi: 10.1002/smll.200700110
    [11] Kang S J, Kocabas C, Ozel T, et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotechnol, 2007, 2: 230 doi: 10.1038/nnano.2007.77
    [12] Lipomi D J, Vosgueritchian M, Tee B C K, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnol, 2011, 6: 788 doi: 10.1038/nnano.2011.184
    [13] Lin D W, Bettinger C J, Ferreira J P, et al. A cell-compatible conductive film from a carbon nanotube network adsorbed on poly-L-lysine. ACS Nano, 2011, 5(12): 10026 doi: 10.1021/nn203870c
    [14] Wang K, Ruan J, Song H, et al. Biocompatibility of graphene oxide. Nanoscale Res Lett, 2011, 6: art. No. 8 doi: 10.1007/s11671-010-9751-6
    [15] Bettinger C J, Bao Z N. Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv Mater, 2010, 22(5): 651 doi: 10.1002/adma.200902322
    [16] Tee B C K, Wang C, Allen R, et al. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotechnol, 2012, 7: 825 doi: 10.1038/nnano.2012.192
    [17] Lipomi D J, Tee B C K, Vosgueritchian M, et al. Stretchable organic solar cells. Adv Mater, 2011, 23(15): 1771 doi: 10.1002/adma.201004426
    [18] Jeon J, Lee H B R, Bao Z N. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv Mater, 2013, 25(6): 850 doi: 10.1002/adma.201204082
    [19] Kim H J, Sim K, Thukral A, et al. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci Adv, 2017, 3(9): art. No. e1701114
    [20] Jin X, Chang X D, Wang W Y, et al. Research progress in flexible wearable strain sensors based on polydimethylsiloxane. J Mater Eng, 2018, 46(11): 13 doi: 10.11868/j.issn.1001-4381.2018.000097

    金欣, 暢旭東, 王聞宇, 等. 基于聚二甲基硅氧烷柔性可穿戴傳感器研究進展. 材料工程, 2018, 46(11):13 doi: 10.11868/j.issn.1001-4381.2018.000097
    [21] Cai Y C, Huang W, Dong X C. Wearable and flexible electronic strain sensor. Chin Sci Bull, 2017, 62(7): 635 doi: 10.1360/N972015-01445

    蔡依晨, 黃維, 董曉臣. 可穿戴式柔性電子應變傳感器. 科學通報, 2017, 62(7):635 doi: 10.1360/N972015-01445
    [22] He Y, Zhou Y Y, Liu H, et al. Research progress of flexible pressure sensors based on carbon materials. Chem Ind Eng Prog, 2018, 37(7): 2664

    何崟, 周藝穎, 劉皓, 等. 基于碳材料的柔性壓力傳感器研究進展. 化工進展, 2018, 37(7):2664
    [23] Luo S, Zhou X, Yang J, et al. The application of carbon nanomaterials in the flexible pressure sensor. J Funct Mater, 2018, 49(8): 08048

    羅實, 周熙, 楊俊, 等. 碳納米材料在柔性壓力傳感器中的應用. 功能材料, 2018, 49(8):08048
    [24] Clippinger F W, Avery R, Titus B R. A sensory feedback system for an upper-limb amputation prosthesis. Bull Pusthet Res, 1974: 247
    [25] Codd R D, Nightingale J M, Todd R W. An adaptive multi-functional hand prosthesis. J Physiology, 1973, 232(2): 55P
    [26] Zhang C R, Liu W J, Wang L S, et al. Electronic skin patent analysis. China Invent Patent, 2016(3): 26 doi: 10.3969/j.issn.1672-6081.2016.03.006

    張超然, 劉婉姬, 王立石, 等. 電子皮膚專利分析. 中國發明與專利, 2016(3):26 doi: 10.3969/j.issn.1672-6081.2016.03.006
    [27] Schwartz G, Tee B C K, Mei J G, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Commun, 2013, 4: 1859 doi: 10.1038/ncomms2832
    [28] Moon J H, Baek D H, Choi Y Y, et al. Wearable polyimide–PDMS electrodes for intrabody communication. J Micromech Microeng, 2010, 20(2): 025032 doi: 10.1088/0960-1317/20/2/025032
    [29] Jung H C, Moon J H, Baek D H, et al. CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring. IEEE Trans Biomed Eng, 2012, 59(5): 1472 doi: 10.1109/TBME.2012.2190288
    [30] Chen C Y, Chang C L, Chien T F, et al. Flexible PDMS electrode for one-point wearable wireless bio-potential acquisition. Sens Actuators A, 2013, 203: 20 doi: 10.1016/j.sna.2013.08.010
    [31] Jung J M, Cha D Y, Kim D S, et al. Development of PDMS-based flexible dry type SEMG electrodes by micromachining technologies. Appl Phys A, 2014, 116(3): 1395 doi: 10.1007/s00339-014-8244-3
    [32] Graudejus O, G?rrn P, Wagner S. Controlling the morphology of gold films on poly (dimethylsiloxane). ACS Appl Mater Interfaces, 2010, 2(7): 1927 doi: 10.1021/am1002537
    [33] Adrega T, Lacour S P. Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. J Micromech Microeng, 2010, 20(5): art. No. 055025
    [34] Ryu S, Lee P, Chou J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano, 2015, 9(6): 5929 doi: 10.1021/acsnano.5b00599
    [35] Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnol, 2011, 6: 296 doi: 10.1038/nnano.2011.36
    [36] Liu N, Chortos A, Lei T, et al. Ultratransparent and stretchable graphene electrodes. Sci Adv, 2017, 3(9): e1700159 doi: 10.1126/sciadv.1700159
    [37] Boland C S, Khan U, Backes C, et al. Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites. ACS Nano, 2014, 8(9): 8819 doi: 10.1021/nn503454h
    [38] Wu W Z, Wen X N, Wang Z L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science, 2013, 340(6135): 952 doi: 10.1126/science.1234855
    [39] Sinha S K, Noh Y, Reljin N, et al. Screen-printed PEDOT: PSS electrodes on commercial finished textiles for electrocardiography. ACS Appl Mater Interfaces, 2017, 9(43): 37524 doi: 10.1021/acsami.7b09954
    [40] Hage-Ali S, Tiercelin N, Coquet P, et al. A millimeter-wave inflatable frequency-agile elastomeric antenna. IEEE Antennas Wirel Propag Lett, 2010, 9: 1131 doi: 10.1109/LAWP.2010.2096405
    [41] Zang Y P, Zhang F J, Di C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater Horiz, 2015, 2(2): 140 doi: 10.1039/C4MH00147H
    [42] Bae S H, Lee Y, Sharma B K, et al. Graphene-based transparent strain sensor. Carbon, 2013, 51: 236 doi: 10.1016/j.carbon.2012.08.048
    [43] Chou H H, Nguyen A, Chortos A, et al. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nature Commun, 2015, 6: 8011 doi: 10.1038/ncomms9011
    [44] Cai L, Song L, Luan P S, et al. Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep, 2013, 3: 3048 doi: 10.1038/srep03048
    [45] Jeong J W, Kim M K, Cheng H, et al. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv Healthcare Mater, 2014, 3(5): 642 doi: 10.1002/adhm.201300334
    [46] Dargahi J, Najarian S. Human tactile perception as a standard for artificial tactile sensing—a review. Int J Med Rob Comput Assist Surg, 2004, 1(1): 23 doi: 10.1002/rcs.3
    [47] Sun Q J, Seung W, Kim B J, et al. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv Mater, 2015, 27(22): 3411 doi: 10.1002/adma.201500582
    [48] Yun S, Park S, Park B, et al. Polymer-waveguide-based flexible tactile sensor array for dynamic response. Adv Mater, 2014, 26(26): 4474 doi: 10.1002/adma.201305850
    [49] Ramuz M, Tee B C K, Tok J B H, et al. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv Mater, 2012, 24(24): 3223 doi: 10.1002/adma.201200523
    [50] Wagner S, Bauer S. Materials for stretchable electronics. MRS Bull, 2012, 37(3): 207 doi: 10.1557/mrs.2012.37
    [51] Yao S S, Zhu Y. Stretchable conductors: nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv Mater, 2015, 27(9): 1479 doi: 10.1002/adma.201570061
    [52] Yan C Y, Lee P S. Stretchable energy storage and conversion devices. Small, 2014, 10(17): 3443 doi: 10.1002/smll.201302806
    [53] Lipomi D J, Bao Z N. Stretchable and ultraflexible organic electronics. MRS Bull, 2017, 42(2): 93 doi: 10.1557/mrs.2016.325
    [54] Matsuhisa N, Kaltenbrunner M, Yokota T, et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nature Commun, 2015, 6: 7461 doi: 10.1038/ncomms8461
    [55] Tybrandt K, V?r?s J. Fast and efficient fabrication of intrinsically stretchable multilayer circuit boards by wax pattern assisted filtration. Small, 2016, 12(2): 180 doi: 10.1002/smll.201502849
    [56] Wang Y, Zhu C X, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv, 2017, 3(3): art. No. e1602076
    [57] Kim H, Ahn J H. Graphene for flexible and wearable device applications. Carbon, 2017, 120: 244 doi: 10.1016/j.carbon.2017.05.041
    [58] Wang S H, Xu J, Wang W C, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555(7694): 83 doi: 10.1038/nature25494
    [59] Poland C A, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnol, 2008, 3: 423 doi: 10.1038/nnano.2008.111
    [60] Pantarotto D, Briand J P, Prato M, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun, 2004(1): 16 doi: 10.1039/b311254c
    [61] Boutry C M, Kaizawa Y, Schroeder B C, et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nature Electron, 2018, 1: 314 doi: 10.1038/s41928-018-0071-7
    [62] Chen G, Matsuhisa N, Liu Z Y, et al. Plasticizing silk protein for on-skin stretchable electrodes. Adv Mater, 2018, 30(21): art. No. e1800129
    [63] Kim S H, Seo H, Kang J, et al. An ultrastretchable and self-healable nanocomposite conductor enabled by autonomously percolative electrical pathways. ACS Nano, 2019, 13(6): 6531 doi: 10.1021/acsnano.9b00160
    [64] Lipomi D J, Chong H, Vosgueritchian M, et al. Toward mechanically robust and intrinsically stretchable organic solar cells: evolution of photovoltaic properties with tensile strain. Sol Energy Mater Sol Cells, 2012, 107: 355 doi: 10.1016/j.solmat.2012.07.013
    [65] Han S, Kim J, Won S M, et al. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci Transl Med, 2018, 10(435): art. No. eaan4950
    [66] Kim D H, Lu N S, Ma R, et al. Epidermal electronics. Science, 2011, 333(6044): 838 doi: 10.1126/science.1206157
    [67] Hua Q L, Sun J L, Liu H T, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nature Commun, 2018, 9: 244 doi: 10.1038/s41467-017-02685-9
    [68] Molina-Lopez F, Gao T Z, Kraft U, et al. Inkjet-printed stretchable and low voltage synaptic transistor array. Nature Commun, 2019, 10: 2676 doi: 10.1038/s41467-019-10569-3
  • 加載中
圖(4)
計量
  • 文章訪問數:  2828
  • HTML全文瀏覽量:  1605
  • PDF下載量:  178
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-18
  • 刊出日期:  2020-06-01

目錄

    /

    返回文章
    返回