<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于圖像混合核的列生成PM2.5預測

李曉理 張博 楊旭

李曉理, 張博, 楊旭. 基于圖像混合核的列生成PM2.5預測[J]. 工程科學學報, 2020, 42(7): 922-929. doi: 10.13374/j.issn2095-9389.2019.07.15.002
引用本文: 李曉理, 張博, 楊旭. 基于圖像混合核的列生成PM2.5預測[J]. 工程科學學報, 2020, 42(7): 922-929. doi: 10.13374/j.issn2095-9389.2019.07.15.002
LI Xiao-li, ZHANG Bo, YANG Xu. Column-generation PM2.5 prediction based on image mixture kernel[J]. Chinese Journal of Engineering, 2020, 42(7): 922-929. doi: 10.13374/j.issn2095-9389.2019.07.15.002
Citation: LI Xiao-li, ZHANG Bo, YANG Xu. Column-generation PM2.5 prediction based on image mixture kernel[J]. Chinese Journal of Engineering, 2020, 42(7): 922-929. doi: 10.13374/j.issn2095-9389.2019.07.15.002

基于圖像混合核的列生成PM2.5預測

doi: 10.13374/j.issn2095-9389.2019.07.15.002
基金項目: 國家自然科學基金資助項目(61873006,61473034,61673053);北京市科學重大專項資助項目(Z181100003118012);國家重點研發計劃資助項目(2018YFC1602704,2018YFB1702704)
詳細信息
    通訊作者:

    E-mail:yangxu@ustb.edu.cn

  • 中圖分類號: TP181

Column-generation PM2.5 prediction based on image mixture kernel

More Information
  • 摘要: 傳統PM2.5預測方法獲取污染物濃度數據需要大型精密儀器,成本較高。本文嘗試利用圖像數據進行PM2.5濃度預測。大氣PM2.5濃度的變化與圖像的暗通道強度、對比度和HSI(Hue-saturation-intensity)顏色差異有密切聯系。大氣中PM2.5濃度的升高會導致非天空區域的暗通道強度值下降,圖像對比度下降和HSI空間顏色差異變小。通過分析PM2.5濃度與圖像特征的關系,提出了一種基于圖像混合核的列生成空氣質量PM2.5預測模型。首先,以1 h為采樣周期,每日8:00~17:00為采樣范圍,采集多種天氣條件下的景物圖像,提取圖像的對比度、暗通道強度和HSI顏色差異共5個圖像特征。其次,數據存在樣本規模大、樣本不平坦分布等特點,單個核函數構成的預測模型難以滿足預測精度需求,因此本文按照核結構從簡單到復雜的原則,選擇線性核函數、多項式核函數和高斯核函數三種核函數建立組合模型。然后計算每個核基于訓練樣本的Gram矩陣,并將所有Gram矩陣并列成一個混合核矩陣。利用列生成算法和混合核矩陣建立預測模型,求解模型參數。最后,進行仿真實驗,實驗結果表明本文提出的可滿足預測精度要求,與單核預測模型相比,該預測模型預測精度更高,模型穩定性更好。計算復雜度分析結果顯示基于圖像混合核的列生成模型與單核預測模型相比計算量無明顯增加。

     

  • 圖  1  數據采集設備(a)及數據樣本(b)

    Figure  1.  Data acquisition equipment (a) and data samples (b)

    圖  2  混合核模型預測值

    Figure  2.  Prediction results of mixture kernel model

    圖  3  混合核模型預測相對誤差

    Figure  3.  Relative error in mixture kernel model prediction

    圖  4  4種模型預測相對誤差

    Figure  4.  Relative error in prediction for the four models

    表  1  特征與PM2.5相關性值

    Table  1.   Correlation between characteristics and PM2.5

    FigFidFihFisFii
    – 0.55– 0.46– 0.36– 0.4– 0.29
    下載: 導出CSV

    表  2  4種模型性能對比

    Table  2.   Performance comparison of the four models

    Kernelemseemape/%R2
    L11.95913.6030.814
    P13.92415.6010.751
    R11.18812.2130.843
    L+P+R9.5539.9550.895
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Zhang X L, Zhao J H, Cai B. Prediction model with dynamic adjustment for single time series of PM2.5. Acta Automatica Sinica, 2018, 44(10): 1790

    張熙來, 趙儉輝, 蔡波. 針對PM2.5單時間序列數據的動態調整預測模型. 自動化學報, 2018, 44(10):1790
    [2] Zhan Y, Luo Y Z, Deng X F, et al. Spatiotemporal prediction of continuous daily PM2.5, concentrations across China using a spatially explicit machine learning algorithm. Atmos Environ, 2017, 155: 129 doi: 10.1016/j.atmosenv.2017.02.023
    [3] Sun W, Sun J Y. Daily PM2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm. J Environ Manage, 2016, 188: 144
    [4] Qu Y, Qian X, Song H Q, et al. Machine-learning-based model and simulation analysis of PM2.5 concentration prediction in Beijing. Chin J Eng, 2019, 41(3): 401

    曲悅, 錢旭, 宋洪慶, 等. 基于機器學習的北京市PM2.5濃度預測模型及模擬分析. 工程科學學報, 2019, 41(3):401
    [5] Russo A, Raischel F, Lind P G. Air quality prediction using optimal neural networks with stochastic variables. Atmos Environ, 2013, 79: 822 doi: 10.1016/j.atmosenv.2013.07.072
    [6] Li J G, Luo A R, Li X L. Prediction of PM2.5 mass concentration based on complementary ensemble empirical mode decomposition and support vector regression. J Beijing Univ Technol, 2018, 44(12): 1494

    李建更, 羅奧榮, 李曉理. 基于互補集合經驗模態分解與支持向量回歸的PM2.5質量濃度預測. 北京工業大學學報, 2018, 44(12):1494
    [7] Liu C B, Tsow F, Zou Y, et al. Particle pollution estimation based on image analysis. PloS One, 2016, 11(2): e0145955 doi: 10.1371/journal.pone.0145955
    [8] Gu K, Qiao J F, Li X L. Highly efficient picture-based prediction of PM2.5 concentration. IEEE Trans Ind Electron, 2019, 66(4): 3176 doi: 10.1109/TIE.2018.2840515
    [9] Li X L, Zhang S, Wang K. PM2.5 air quality prediction based on image quality analysis. J Beijing Univ Technol, 2020, 46(2): 191

    李曉理, 張山, 王康. 基于圖像質量分析的PM2.5空氣質量預測. 北京工業大學學報, 2020, 46(2):191
    [10] Wang H Q, Sun F C, Cai Y N, et al. On multiple kernel learning methods. Acta Autom Sin, 2010, 36(8): 1037 doi: 10.3724/SP.J.1004.2010.01037

    汪洪橋, 孫富春, 蔡艷寧, 等. 多核學習方法. 自動化學報, 2010, 36(8):1037 doi: 10.3724/SP.J.1004.2010.01037
    [11] Fink M, Desaulniers G, Frey M, et al. Column generation for vehicle routing problems with multiple synchronization constraints. Eur J Oper Res, 2019, 272(2): 699 doi: 10.1016/j.ejor.2018.06.046
    [12] Li H. Statistical Learning Method. Beijing: Tsinghua University Press, 2012

    李航. 統計學習方法. 北京: 清華大學出版社, 2012
    [13] Demiriz A, Bennett K P, Shawe-Taylor J. Linear programming boosting via column generation. Mach Learn, 2002, 46(1-3): 225
    [14] Bi J B, Zhang T, Bennett K P. Column-generation boosting methods for mixture of kernels//Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle, 2004: 521
    [15] Vapnik V. The Nature of Statistical Learning Theory. Springer Science & Business Media, 2013
    [16] Berman D, Treibitz T, Avidan S. Single image dehazing using haze-lines. IEEE Trans Pattern Anal Mach Intell, 2018, 42(3): 720
    [17] Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. John Wiley & Sons, 2016
    [18] Graves N, Newsam S. Camera-based visibility estimation: Incorporating multiple regions and unlabeled observations. Ecol Inform, 2014, 23: 62 doi: 10.1016/j.ecoinf.2013.08.005
    [19] He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell, 2011, 33(12): 2341 doi: 10.1109/TPAMI.2010.168
    [20] Kim K W, Kim Y J. Perceived visibility measurement using the HSI color difference method. J Korean Phys Soc, 2005, 46(5): 1243
    [21] Yuan L, Mu Z C, Liu L M. Ear recognition based on kernel principal component analysis and support vector machine. J Univ Sci Technol Beijing, 2006, 28(9): 890 doi: 10.3321/j.issn:1001-053X.2006.09.019

    袁立, 穆志純, 劉磊明. 基于核主元分析法和支持向量機的人耳識別. 北京科技大學學報, 2006, 28(9):890 doi: 10.3321/j.issn:1001-053X.2006.09.019
  • 加載中
圖(4) / 表(2)
計量
  • 文章訪問數:  1118
  • HTML全文瀏覽量:  849
  • PDF下載量:  20
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-15
  • 刊出日期:  2020-07-01

目錄

    /

    返回文章
    返回