Optimization of the effect and formulation of different coarse aggregates on performance of the paste backfill condensation
-
摘要: 甘肅金川銅鎳礦似膏體充填料漿水化凝結時間遲緩、粗骨料離析程度大,嚴重影響充填漿體的質量。本文以金川二礦區全尾砂、廢石和棒磨砂為實驗材料,采用全面實驗設計法,研究不同質量分數、粗骨料及尾骨比(全尾砂與粗骨料質量比)對膏體充填凝結性能、抗壓強度和流變特性的影響規律。實驗結果表明:全尾砂–粗骨料膏體中,粗骨料的比表面積和化學成分(活性MgO和CaO)是影響凝結時間的主要因素;凝結時間隨尾骨比增加而縮短,屈服應力隨尾骨比增加而增加,塑性黏度(全尾砂–廢石、全尾砂–棒磨砂膏體)隨尾骨比增加而增加;全尾砂–廢石膏體抗壓強度優于全尾砂–廢石–棒磨砂膏體抗壓強度;最短凝結時間及最佳抗壓強度(全尾砂–廢石膏體、尾骨比5∶5)比礦用凝結時間和抗壓強度分別縮短2.1 h和增加33%以上。最后對凝結性能進行單目標及多目標回歸優化,多目標回歸優化表明:全尾砂–廢石–棒磨砂膏體最佳凝結時間為270~300 min、尾骨比10∶6∶6~10∶7∶7、屈服應力為167.0~169.0 Pa;全尾砂–棒磨砂膏體最佳凝結時間為300~330 min、尾骨比10∶14~10∶16、屈服應力為164.0~167.0 Pa,滿足礦山生產要求。Abstract: Hydration and setting time of paste-like backfill slurry in the Gansu Province’s Jinchuan copper and nickel mine is slow, and the degree of segregation of coarse aggregate is high, seriously affecting the quality of cemented paste backfill. In this paper, by taking the unclassified tailings, waste rock and rod milling sand in Jinchuan’s No. 2 mining area as the experimental materials, and adopting the comprehensive test design method, the effects of different mass fraction, coarse aggregates and tailings-coarse aggregate ratio (mass ratio of unclassified tailings to coarse aggregate) on the setting performance, unconfined compressive strength and rheological properties of cemented paste backfill were studied. The experimental results show that the coarse aggregate's specific surface area and chemical composition (active MgO and CaO) in the unclassified tailings-coarse aggregate paste are the main factors influencing the setting time. Increasing the tailings-coarse aggregate ratio decreased the setting time of the paste backfill theory. Increasing the tailings-coarse aggregate ratio increased the yield stress of paste backfill slurry. With the increase in the tailings-coarse aggregate ratio, the plastic viscosity of paste backfill slurry (unclassified tailings-waste rock, unclassified tailings-waste rock-rod milling sand paste) increased. The unconfined compressive strength of the unclassified tailings-waste rock paste is better than that of the unclassified tailings-waste rock-rod milling sand paste. The shortest setting time and the best unconfined compressive strength (the unclassified tailings-waste rock paste, tailings-coarse aggregate ratio 5∶5) were reduced by 2.1 h, individually. They were also increased by more than 33% relative to the setting time, and unconfined compressive strength of the mine. Finally, the setting performance was optimized for single-objective and multi-objective regression. The multi-objective regression optimization showed that optimum setting time for the unclassified tailings-waste rock-rod milling sand paste was approximately 270 to 300 min, while for the unclassified tailings waste rock rod milling sand was approximately 10∶6∶6–10∶7∶7 and yield stress was about 167.0 to 169.0 Pa. The optimum setting time of the unclassified tailings-rod milling sand paste was found to be about 300–330 min for the single-objective regression, the unclassified tailings rod milling sand was approximately 10∶14–10∶16, and yield stress was about 164.0–167.0 Pa, which met the mine production requirements.
-
表 1 物料化學成分(質量分數)
Table 1. Chemical constituents of materials
% Materials SiO2 CaO MgO Al2O3 Fe2O3 SO3 K2O TiO2 MnO Loss Unclassified tailings 34.20 3.73 32.71 5.04 19.14 3.37 0.39 0.33 0.00 1.09 Waste rock 36.71 16.39 27.22 6.81 7.17 2.58 1.95 0.54 0.12 0.51 Rod milling sand 75.75 3.58 1.05 10.95 2.35 1.45 2.50 0.33 0.00 2.04 表 2 礦物活性評價指標公式
Table 2. Formula of mineral activity evaluation index
Evaluation Alkalinity rate Activity rate Mass index Formula ${M_0}{\rm{ = }}\dfrac{{m{\rm{(CaO)}} + m({\rm{MgO}})}}{{m({\rm{Si}}{{\rm{O}}_{\rm{2}}}) + m({\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}})}}$ ${M_{\rm{a}}}{\rm{ = }}\dfrac{{m({\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}})}}{{m({\rm{Si}}{{\rm{O}}_{\rm{2}}})}}$ $K = \dfrac{{m({\rm{CaO}}) + m({\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}) + {\rm{MgO}}}}{{m({\rm{Si}}{{\rm{O}}_{\rm{2}}}) + m({\rm{Ti}}{{\rm{O}}_{\rm{2}}}) + m({\rm{MnO}})}}$ Value M0>1: alkaline slag
M0=1: neutral slag
M0<1: acid slagMa>0.25: high activity
0.15<Ma <0.25: moderate activity
Ma<0.15: low activityK>1.9: high active slag
1.2<K<1.9: moderate active slag
K<1.2: low active slag表 3 粗骨料粒徑組成(質量分數)
Table 3. Particle size distribution of coarse aggregate
% Particle size content –0.3 mm +0.3 ~ –0.45 mm +0.45 ~ –2 mm +2 ~ –4.75 mm +4.75 ~ –10 mm +10 ~ –15 mm +15 mm Waste rock 5.67 8.92 10.31 19.73 38.60 6.12 10.64 Rod milling sand 17.56 16.37 33.53 16.43 10.28 2.06 3.78 River sand 23.93 27.70 19.77 19.67 7.83 0.93 0 表 4 膏體凝結性能試驗設計方案
Table 4. Test design of condensation performance of paste backfill
Phases Proportioning Raw materials Mass fraction / % Phase 1 5∶2.5∶2.5 River sand–waste rock–rod milling sand 75 5∶2.5∶2.5 River sand–waste rock–rod milling sand 76 5∶2.5∶2.5 River sand–waste rock–rod milling sand 77 5∶2.5∶2.5 River sand–waste rock–rod milling sand 78 5∶2.5∶2.5 River sand–waste rock–rod milling sand 79 5∶2.5∶2.5 River sand–waste rock–rod milling sand 80 Phase 2 6∶4 Unclassified tailings–waste rock 77 5∶5 Unclassified tailings–waste rock 77 4∶6 Unclassified tailings–waste rock 77 6∶4 Unclassified tailings–rod milling sand 77 5∶5 Unclassified tailings–rod milling sand 77 4∶6 Unclassified tailings–rod milling sand 77 6∶2∶2 Unclassified tailings–waste rock–rod milling sand 77 5∶2.2∶2.5 Unclassified tailings–waste rock–rod milling sand 77 4∶3∶3 Unclassified tailings–waste rock–rod milling sand 77 259luxu-164 -
參考文獻
[1] Cui L, Fall M. An evolutive elasto-plastic model for cemented paste backfill. Comput Geotech, 2016, 71: 19 doi: 10.1016/j.compgeo.2015.08.013 [2] Yang Z Q, Wang Y Q, Gao Q, et al. Key technologies for comprehensive utilization of solid waste from filling mining in jinchuan mine. Resour Environ Eng, 2014, 28(5): 706 doi: 10.3969/j.issn.1671-1211.2014.05.024楊志強, 王永前, 高謙, 等. 金川礦山充填采礦固體廢棄物綜合利用關鍵技術. 資源環境與工程, 2014, 28(5):706 doi: 10.3969/j.issn.1671-1211.2014.05.024 [3] Luo T, Wang Q, Zhuang S Y, et al. Effects of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes. Powder Tech, 2019, 345: 54 doi: 10.1016/j.powtec.2018.12.094 [4] Wang H J, Li H, Wu A X, et al. Effects of germanium waste residue content on hydration and setting of cement and paste. J Cent South Univ Sci Technol, 2013(2): 743王洪江, 李輝, 吳愛祥, 等. 鍺廢渣摻量對水泥及膏體水化凝結的影響規律. 中南大學學報: 自然科學版, 2013(2):743 [5] Deng S F. Effects of steel slag powder on the setting time and strength of concrete. Fujian building mater, 2018, 203(3): 17鄧樹峰. 鋼渣粉對混凝土凝結時間和強度的影響研究. 福建建材, 2018, 203(3):17 [6] Wang F Z, Wang H J, Li G C, et al. Study on the effect of aggregate size on paste setting property. Min Res Dev, 2018, 38(11): 35王方正, 王洪江, 李公成, 等. 骨料粒級對膏體凝結性能影響的研究. 礦業研究與開發, 2018, 38(11):35 [7] Elyamany H E, Abd E A E M, Elshaboury A M. Setting time and 7-day strength of geopolymer mortar with various binders. Constr Build Mater, 2018, 187: 974 doi: 10.1016/j.conbuildmat.2018.08.025 [8] Wang X F. Green mine construction planning scheme of jinchuan no. 2 mining area. Mod Min, 2017(5): 252王曉帆. 金川二礦區綠色礦山建設規劃方案. 現代礦業, 2017(5):252 [9] Wu A X, Wang H J. Theory and Technology of Metal Mine Cemented Paste Backfill. Beijing: Science Press, 2015吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 科學出版社, 2015 [10] Jiang L Z, Yan B L, Liu C, et al. Revision introduction of GB/T1346 water consumption for cement standard consistency, setting time and stability test method. Cement, 2012(9): 40江麗珍, 顏碧蘭, 劉晨, 等. GB/T1346《水泥標準稠度用水量、凝結時間、安定性檢驗方法》修訂內容介紹. 水泥, 2012(9):40 [11] Yin S H, Wu A X, Hu K, et al. The effect of solid components on the rheological and mechanical properties of cemented paste backfill. Miner Eng, 2012, 35: 61 doi: 10.1016/j.mineng.2012.04.008 [12] Shi X Y. Effect of water-cement ratio on setting time of cement net slurry. Sichuan Cement, 2018(7): 07施瀟韻. 水灰比對水泥凈漿凝結時間的影響. 四川水泥, 2018(7):07 [13] Zhang L, Wang H J, Wu A X, et al. Effect of sodium sulfide on setting property of filling paste in a lead-zinc mine. Met mine, 2016, 45(9): 44 doi: 10.3969/j.issn.1001-1250.2016.09.007張磊, 王洪江, 吳愛祥, 等. 硫化鈉對某鉛鋅礦充填膏體凝結性能的影響. 金屬礦山, 2016, 45(9):44 doi: 10.3969/j.issn.1001-1250.2016.09.007 [14] Yin S H, Liu J M, Shao Y J, et al. Influence rule of early compressive strength and solidification mechanism of full tailings paste with coarse aggregate. J Cent South Univ Sci Technol, 2020, 51(2): 478尹升華, 劉家明, 邵亞建, 等. 全尾砂–粗骨料膏體早期抗壓強度影響規律及固化機理. 中南大學學報: 自然科學版, 2020, 51(2):478 [15] Guo S M. Study on cementing materials and technology of mine filling based on blast furnace water quenching slag. Gansu metall, 2007, 29(4): 01郭生茂. 基于高爐水淬渣的礦山膠結充填材料與工藝研究. 甘肅冶金, 2007, 29(4):01 [16] Liu X H, Wu A X, Wang H J, et al. Influence mechanism and calculation model of CPB rheological parameters. Chin J Eng, 2017, 39(2): 190劉曉輝, 吳愛祥, 王洪江, 等. 膏體流變參數影響機制及計算模型. 工程科學學報, 2017, 39(2):190 [17] Yang L H, Wang H J, Wu A X, Li H, et al. Effect of mixing time on hydration kinetics and mechanical property of cemented paste backfill. Constr Build Mater, 2020, 247: 118516 doi: 10.1016/j.conbuildmat.2020.118516 [18] Yan B H, Li C P, Wu A X, et al. Analysis of influencing factors of coarse particle migration in paste slurry pipeline. Chin J Nonferrous Met, 2018, 28(10): 201顏丙恒, 李翠平, 吳愛祥, 等. 膏體料漿管道輸送中粗顆粒遷移的影響因素分析. 中國有色金屬學報, 2018, 28(10):201 [19] Boger D V. Rheology and the resource industries. Chem Eng Sci, 2009, 64(22): 4525 doi: 10.1016/j.ces.2009.03.007 [20] Su J M, Ruan S Y, Wang Y L. MATLAB engineering mathematics. Beijing: Electronic Industry Press, 2005蘇金明, 阮沈勇, 王永利. MATLAB 工程數學. 北京: 電子工業出版社, 2005 [21] Lan W T, Wu A X, Wang Y M. Formulation optimization and formation mechanism of condensate expansion and filling composites. Acta Mater Compos Sin, 2019, 36: 2蘭文濤, 吳愛祥, 王貽明. 凝水膨脹充填復合材料的配比優化與形成機制. 復合材料學報, 2019, 36:2 [22] Zhang H T. The best value of multivariate functions. J Shanxi Datong Univ Sci Technol, 2017, 33(5): 1張海濤. 巧解多元函數的最值. 山西大同大學學報: 自然科學版, 2017, 33(5):1 -