[1] |
Han Y, Fan J L, Liu T, et al. The effect of trace nickel additive and ball milling treatment on the near-full densification behavior of ultrafine tungsten powder. Int J Refract Met Hard Mater, 2012, 34: 18 doi: 10.1016/j.ijrmhm.2012.02.014
|
[2] |
Li B Q, Sun Z Q, Hou G L, et al. The sintering behavior of quasi-spherical tungsten nanopowders. Int J Refract Met Hard Mater, 2016, 56: 44 doi: 10.1016/j.ijrmhm.2015.10.007
|
[3] |
Kaufmann M, Neu R. Tungsten as first wall material in fusion devices. Fusion Eng Des, 2007, 82(5-14): 521 doi: 10.1016/j.fusengdes.2007.03.045
|
[4] |
Ren C, Fang Z Z, Zhang H, et al. The study on low temperature sintering of nano-tungsten powders. Int J Refract Met Hard Mater, 2016, 61: 273 doi: 10.1016/j.ijrmhm.2016.10.003
|
[5] |
Kitsunai Y, Kurishita H, Kayano H, et al. Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC. J Nucl Mater, 1999, 271-272: 423 doi: 10.1016/S0022-3115(98)00753-3
|
[6] |
Kurishita H, Amano Y, Kobayashi S, et al. Development of ultra-fine grained W–TiC and their mechanical properties for fusion applications. J Nucl Mater, 2007, 367-370: 1453 doi: 10.1016/j.jnucmat.2007.04.008
|
[7] |
Kecskes L J, Cho K C, Dowding R J, et al. Grain size engineering of bcc refractory metals: top-down and bottom-up—Application to tungsten. Mater Sci Eng A, 2007, 467(1-2): 33 doi: 10.1016/j.msea.2007.02.099
|
[8] |
Tan J, Zhou Z J, Qu D D, et al. Current status of the ultra-fine grained tungsten and its alloys. Powder Metall Ind, 2012, 22(3): 56 doi: 10.3969/j.issn.1006-6543.2012.03.010談軍, 周張健, 屈丹丹, 等. 超細晶鎢及其復合材料的研究現狀. 粉末冶金工業, 2012, 22(3):56 doi: 10.3969/j.issn.1006-6543.2012.03.010
|
[9] |
Ren C, Koopman M, Fang Z Z, et al. A study on the sintering of ultrafine grained tungsten with Ti-based additives. Int J Refract Met Hard Mater, 2017, 65: 2 doi: 10.1016/j.ijrmhm.2016.11.013
|
[10] |
Zhang S W, Wen Y, Zhang H J. Low temperature preparation of tungsten nanoparticles from molten salt. Powder Technol, 2014, 253: 464 doi: 10.1016/j.powtec.2013.11.052
|
[11] |
Ryu T, Sohn H Y, Hwang K S, et al. Chemical vapor synthesis (CVS) of tungsten nanopowder in a thermal plasma reactor. Int J Refract Met Hard Mater, 2009, 27(1): 149 doi: 10.1016/j.ijrmhm.2008.06.002
|
[12] |
Ricceri R, Matteazzi P. A study of formation of nanometric W by room temperature mechanosynthesis. J Alloys Compd, 2003, 358(1-2): 71 doi: 10.1016/S0925-8388(03)00125-7
|
[13] |
Ryu T, Hwang K S, Choi Y J, et al. The sintering behavior of nanosized tungsten powder prepared by a plasma process. Int J Refract Met Hard Mater, 2009, 27(4): 701 doi: 10.1016/j.ijrmhm.2008.11.004
|
[14] |
Groza J R, Zavaliangos A. Sintering activation by external electrical field. Mater Sci Eng A, 2000, 287(2): 171 doi: 10.1016/S0921-5093(00)00771-1
|
[15] |
Mondal A, Upadhyaya A, Agrawal D. Effect of heating mode on sintering of tungsten. Int J Refract Met Hard Mater, 2010, 28(5): 597 doi: 10.1016/j.ijrmhm.2010.05.002
|
[16] |
Prabhu G, Chakraborty A, Sarma B. Microwave sintering of tungsten. Int J Refract Met Hard Mater, 2009, 27(3): 545 doi: 10.1016/j.ijrmhm.2008.07.001
|
[17] |
Zhou Z J, Ma Y, Du J, et al. Fabrication and characterization of ultra-fine grained tungsten by resistance sintering under ultra-high pressure. Mater Sci Eng A, 2009, 505(1-2): 131 doi: 10.1016/j.msea.2008.11.012
|
[18] |
Zhou Z J, Pintsuk G, Linke J, et al. Transient high heat load tests on pure ultra-fine grained tungsten fabricated by resistance sintering under ultra-high pressure. Fusion Eng Des, 2010, 85(1): 115 doi: 10.1016/j.fusengdes.2009.08.003
|
[19] |
Ding L, Xiang D P, Li Y Y, et al. Effects of sintering temperature on fine-grained tungsten heavy alloy produced by high-energy ball milling assisted spark plasma sintering. Int J Refract Met Hard Mater, 2012, 33: 65 doi: 10.1016/j.ijrmhm.2012.02.017
|
[20] |
Liu R, Zhou Y, Hao T, et al. Microwave synthesis and properties of fine-grained oxides dispersion strengthened tungsten. J Nucl Mater, 2012, 424(1-3): 171 doi: 10.1016/j.jnucmat.2012.03.008
|
[21] |
Kim Y, Lee K H, Kim E P, et al. Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process. Int J Refract Met Hard Mater, 2009, 27(5): 842 doi: 10.1016/j.ijrmhm.2009.03.003
|
[22] |
Rieth M, Dafferner B. Limitations of W and W?1%La2O3 for use as structural materials. J Nucl Mater, 2005, 342(1-3): 20 doi: 10.1016/j.jnucmat.2005.03.013
|
[23] |
Yar M A, Wahlberg S, Bergqvist H, et al. Chemically produced nanostructured ODS–lanthanum oxide–tungsten composites sintered by spark plasma. J Nucl Mater, 2011, 408(2): 129 doi: 10.1016/j.jnucmat.2010.10.060
|
[24] |
Yar M A, Wahlberg S, Bergqvist H, et al. Spark plasma sintering of tungsten?yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization. J Nucl Mater, 2011, 412(2): 227 doi: 10.1016/j.jnucmat.2011.03.007
|
[25] |
Wesemann I, Spielmann W, Heel P, et al. Fracture strength and microstructure of ODS tungsten alloys. Int J Refract Met Hard Mater, 2010, 28(6): 687 doi: 10.1016/j.ijrmhm.2010.05.009
|
[26] |
Li B Q, Sun Z Q, Hou G L, et al. The effects of alumina reinforcement and nickel activated sintering on nanosized tungsten matrix. J Alloys Compd, 2017, 692: 420 doi: 10.1016/j.jallcom.2016.09.081
|
[27] |
Gaur R P S. Modern hydrometallurgical production methods for tungsten. JOM, 2006, 58(9): 45 doi: 10.1007/s11837-006-0082-0
|
[28] |
Sun G D, Zhang G H. Novel pathway to prepare Mo nanopowder via hydrogen reduction of MoO2 containing Mo nanoseeds produced by reducing MoO3 with carbon black. JOM, 2019, 72: 347
|
[29] |
Sun G D, Wang K F, Song C M, et al. A low-cost, efficient, and industrially feasible pathway for large scale preparation of tungsten nanopowders. Int J Refract Met Hard Mater, 2019, 78: 100 doi: 10.1016/j.ijrmhm.2018.08.013
|
[30] |
Wang D H, Sun G D, Zhang G H. Preparation of ultrafine Mo powders via carbothermic pre-reduction of molybdenum oxide and deep reduction by hydrogen. Int J Refract Met Hard Mater, 2018, 75: 70 doi: 10.1016/j.ijrmhm.2018.04.002
|
[31] |
Fang Z Z, Wang H T, Kumar V. Coarsening, densification, and grain growth during sintering of nano-sized powders—a perspective. Int J Refract Met Hard Mater, 2017, 62: 110 doi: 10.1016/j.ijrmhm.2016.09.004
|
[32] |
Kim Y, Hong M H, Lee S H, et al. The effect of yttrium oxide on the sintering behavior and hardness of tungsten. Met Mater Int, 2006, 12(3): 245 doi: 10.1007/BF03027538
|
[33] |
Wu X W, Luo J S, Lu B Z, et al. Crystal growth of tungsten during hydrogen reduction of tungsten oxide at high temperature. Trans Nonferrous Met Soc China, 2009, 19(Suppl 3): s785
|
[34] |
Wang L, Zhang G H, Chou K C. Mechanism and kinetic study of hydrogen reduction of ultra-fine spherical MoO3 to MoO2. Int J Refract Met Hard Mater, 2016, 54: 342 doi: 10.1016/j.ijrmhm.2015.09.003
|
[35] |
Dang J, Zhang G H, Chou K C, et al. Kinetics and mechanism of hydrogen reduction of MoO3 to MoO2. Int J Refract Met Hard Mater, 2013, 41: 216 doi: 10.1016/j.ijrmhm.2013.04.002
|
[36] |
Wang D H, Jiao S Q, Zhang G H, et al. Preparation of submicron Mo powders by the reaction between MoO2 and activated carbon. J Aust Ceram Soc, 2019, 55(2): 297 doi: 10.1007/s41779-018-0235-y
|
[37] |
Wang D H, Zhang G H, Chou K C. A new route to produce submicron Mo powders via carbothermal pre-reduction followed by deep magnesium reduction. JOM, 2018, 70(11): 2561 doi: 10.1007/s11837-018-3062-2
|
[38] |
Fang Z Z, Wang X, Ryu T, et al. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – a review. Int J Refract Met Hard Mater, 2009, 27(2): 288 doi: 10.1016/j.ijrmhm.2008.07.011
|
[39] |
Wang H T, Fang Z Z. Kinetic analysis of densification behavior of nano-sized tungsten powder. J Am Ceram Soc, 2012, 95(8): 2458 doi: 10.1111/j.1551-2916.2012.05282.x
|
[40] |
Wahlberg S, Yar M A, Abuelnaga M O, et al. Fabrication of nanostructured W–Y2O3 materials by chemical methods. J Mater Chem, 2012, 22(25): 12622 doi: 10.1039/c2jm30652b
|
[41] |
Sylwestrowicz W, Hall E O. The deformation and ageing of mild steel. Proc Phys Soc Sect B, 2002, 64(6): 495
|
[42] |
Dong Z, Liu N, Ma Z Q, et al. Microstructure refinement in W–Y2O3 alloy fabricated by wet chemical method with surfactant addition and subsequent spark plasma sintering. Sci Rep, 2017, 7: 6051 doi: 10.1038/s41598-017-06437-z
|