<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

用戶屬性感知的移動社交網絡邊緣緩存機制

楊靜 武佳 李紅霞

楊靜, 武佳, 李紅霞. 用戶屬性感知的移動社交網絡邊緣緩存機制[J]. 工程科學學報, 2020, 42(7): 930-938. doi: 10.13374/j.issn2095-9389.2019.07.12.001
引用本文: 楊靜, 武佳, 李紅霞. 用戶屬性感知的移動社交網絡邊緣緩存機制[J]. 工程科學學報, 2020, 42(7): 930-938. doi: 10.13374/j.issn2095-9389.2019.07.12.001
YANG Jing, WU Jia, LI Hong-xia. User-aware edge-caching mechanism for mobile social network[J]. Chinese Journal of Engineering, 2020, 42(7): 930-938. doi: 10.13374/j.issn2095-9389.2019.07.12.001
Citation: YANG Jing, WU Jia, LI Hong-xia. User-aware edge-caching mechanism for mobile social network[J]. Chinese Journal of Engineering, 2020, 42(7): 930-938. doi: 10.13374/j.issn2095-9389.2019.07.12.001

用戶屬性感知的移動社交網絡邊緣緩存機制

doi: 10.13374/j.issn2095-9389.2019.07.12.001
基金項目: 國家自然科學基金資助項目(61771082,61871062);重慶市高校創新團隊建設計劃資助項目(CXTDX201601020)
詳細信息
    通訊作者:

    E-mail: 1309431264@qq.com

  • 中圖分類號: TN929.5

User-aware edge-caching mechanism for mobile social network

More Information
  • 摘要: 針對數據流量爆發式增長所引發的網絡擁塞、用戶體驗質量惡化等問題,提出一種用戶屬性感知的邊緣緩存機制。首先,利用隱語義模型獲知用戶對各類內容的興趣度,進而估計本地流行內容,然后微基站將預測的本地流行內容協作緩存,并根據用戶偏好的變化,將之實時更新。為進一步減少傳輸時延,根據用戶偏好構建興趣社區,在興趣社區中基于用戶的緩存意愿和緩存能力,選擇合適的緩存用戶緩存目標內容并分享給普通用戶。結果表明,所提機制性能優于隨機緩存及最流行內容緩存算法,在提高緩存命中率、降低傳輸時延的同時,增強了用戶體驗質量。

     

  • 圖  1  用戶屬性感知的邊緣緩存模型

    Figure  1.  User-aware edge-caching model

    圖  2  不同緩存容量下的緩存命中率

    Figure  2.  Cache hit ratio versus cache capacity

    圖  3  不同緩存用戶數下的緩存命中率

    Figure  3.  Cache hit ratio versus number of cache users

    圖  4  不同機制中緩存命中率隨著緩存容量的變化

    Figure  4.  Cache hit ratio versus cache capacity in different mechanisms

    圖  5  不同機制中緩存命中率隨著緩存用戶數變化

    Figure  5.  Cache hit ratio versus number of cache users in different mechanisms

    圖  6  不同緩存容量下的平均傳輸時延比較

    Figure  6.  Average transmission delay versus cache capacity

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Cisco. Cisco annual internet report (2018–2023) white paper [R/OL]. Cisco (2020-03-09) [2020-05-15]. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

    思科. 思科年度互聯網報告(2018-2023)白皮書[R/OL]. 思科(2020-03-09)[2020-05-15]. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
    [2] Wu D P, Zhang F, Wang H G, et al. Security-oriented opportunistic data forwarding in mobile social networks. Future Generation Comput Syst, 2018, 87: 803 doi: 10.1016/j.future.2017.07.028
    [3] Cai J L Z, Yan M Y, Li Y S. Using crowdsourced data in location-based social networks to explore influence maximization // IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications. San Francisco, 2016: 1
    [4] Gregori M, Gómez-Vilardebó J, Matamoros J, et al. Wireless content caching for small cell and D2D networks. IEEE J Sel Areas Commun, 2016, 34(5): 1222 doi: 10.1109/JSAC.2016.2545413
    [5] Jiang X W, Zhang T K, Zeng Z M. Content clustering and popularity prediction based caching strategy in content centric networking // 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). Sydney, 2017: 1
    [6] Zhang Y R, Pan E T, Song L Y, et al. Social network aware device-to-device communication in wireless networks. IEEE Trans Wireless Commun, 2015, 14(1): 177 doi: 10.1109/TWC.2014.2334661
    [7] Chen M Z, Saad W, Yin C C, et al. Echo state networks for proactive caching in cloud-based radio access networks with mobile users. IEEE Trans Wireless Commun, 2017, 16(6): 3520 doi: 10.1109/TWC.2017.2683482
    [8] Cheng Y Q, Wu M Q, Zhao M, et al. Socially-aware NodeRank-based caching strategy for Content-Centric Networking // 2016 International Symposium on Wireless Communication Systems (ISWCS). Poznan, 2016: 297
    [9] Zirak M, Yaghmaee M H, Tabbakh S R K. A distributed cache points selection scheme for reliable transport protocols with intermediate caching in Wireless Sensor Networks // 16th International Conference on Advanced Communication Technology. Pyeongchang, 2014: 705
    [10] Al Ridhawi I, Al Ridhawi Y. A cache-node selection mechanism for data replication and service composition within cloud-based systems // 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN). Milan, 2017: 726
    [11] Cui L Z, Dong L Y, Fu X H, et al. A video recommendation algorithm based on the combination of video content and social network. Concurrency Comput:Pract. Exper, 2017, 29(14): e3900 doi: 10.1002/cpe.3900
    [12] Qiu L, Cao G H. Cache increases the capacity of wireless networks // IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications. San Francisco, 2016: 1
    [13] Harper F M, Konstan J A. The movielens datasets: History and context. ACM Trans Interactive Intell Syst, 2016, 5(4): 19
    [14] Bastug E, Bennis M, Debbah M. Living on the edge: The role of proactive caching in 5G wireless networks. IEEE Commun Mag, 2014, 52(8): 82 doi: 10.1109/MCOM.2014.6871674
    [15] Ahlehagh H, Dey S. Video-aware scheduling and caching in the radio access network. IEEE/ACM Trans Networking, 2014, 22(5): 1444 doi: 10.1109/TNET.2013.2294111
    [16] Blaszczyszyn B, Giovanidis A. Optimal geographic caching in cellular networks // 2015 IEEE International Conference on Communications (ICC). London, 2015: 3358
  • 加載中
圖(6)
計量
  • 文章訪問數:  1319
  • HTML全文瀏覽量:  996
  • PDF下載量:  37
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-12
  • 刊出日期:  2020-07-01

目錄

    /

    返回文章
    返回