-
摘要: 以特殊鋼鋼渣、炭黑、促進劑、硫磺、氧化鋅、硬脂酸與復合橡膠制備特殊鋼鋼渣基復合橡膠。測試了內輻射指數、外輻射指數、安定性、拉伸強度、撕裂強度、拉斷伸長率、邵爾A硬度、極限氧指數、燃盡時間、浸出液中重金屬濃度、礦物組成、粒徑分布、導熱系數、孔結構、化學成分、微觀形貌和熱穩定性。研究了特殊鋼鋼渣作為橡膠功能填料的可行性與環境風險。結果表明:特殊鋼鋼渣的礦物組成為Ca2SiO4、Ca3Al6Si2O16、(Fe, Mn)2SiO4、Ca3Al2(SiO4)3、Na2TiSiO5、CuMn6SiO12、Na2SiO5、Pb3Ta2O8、Pb3SiO7等金屬固熔體,特殊鋼鋼渣具有良好的粒徑分布,其安全性與安定性滿足相關國標的要求。特殊鋼鋼渣基復合橡膠中特殊鋼鋼渣摻量為20%~40%時,特殊鋼鋼渣基復合橡膠的拉伸強度為20.0~21.5 MPa、撕裂強度為45.2~48.6 kN·m?1、拉斷伸長率為475%~501%、邵爾A硬度為63.5~65.3、極限氧指數為18.5~18.6、燃盡時間為264~292 s、導熱系數為0.15~0.17 W·m?1·K?1。特殊鋼鋼渣的主要重金屬氧化物為Cr2O3、PbO和CuO,且以穩定的金屬固熔體存在,特殊鋼鋼渣基復合橡膠中Cu、Zn、Cd、Pb、Cr、Ba、Ni、As等重金屬浸出濃度遠低于危險廢物鑒別標準限值,因此將特殊鋼鋼渣作為橡膠功能填料安全、可行。Abstract: The utilization of high-value-added metallurgical solid waste, such as the use of an inexpensive specialty-steel slag as a rubber functional filler, is an important sustainable development strategy. In this study, we prepared specialty-steel slag-based rubber composites from specialty-steel slag, carbon black, an accelerator, sulfur, zinc oxide, stearic acid, and compound rubber. Then we conducted tests to determine the internal exposure index, external exposure index, stability, tensile strength, tear strength, elongation at break, shore A hardness, limiting oxygen index, burnout time, leaching concentration of heavy metals, mineral composition, particle size distribution, heat conductivity coefficient, pore structure, chemical composition, microstructure, and thermal stability of the composites. We also studied the feasibility and environmental risk associated with using specialty-steel slag as a rubber functional filler. The results show that the mineral composition of the specialty-steel slag includes Ca2SiO4, Ca3Al6Si2O16, (Fe, Mn)2SiO4, Ca3Al2(SiO4)3, Na2TiSiO5, CuMn6SiO12, Na2SiO5, Pb3Ta2O8, Pb3SiO7, and other solid metal melts. This slag also has a good particle size distribution, and its safety and stability meet the requirements of relevant national standards. When the content of the specialty-steel slag in specialty-steel slag-based rubber composites ranges between 20%–40%, these composites have a tensile strength ranging from 20.0–21.5 MPa, a tear strength of 45.2–48.6 kN·m?1, an elongation at break value of 475%–501%, a shore A hardness of 63.5–65.3, a limiting oxygen index of 18.5–18.6, a burnout time of 264–292 s, and a heat conductivity coefficient of 0.15–0.17 W·m?1·K?1. The main heavy-metal oxides in the specialty-steel slag are identified as Cr2O3, PbO, and CuO, which mainly exist as stable solid metals. In addition, the leaching concentration of the heavy metals, such as Cu, Zn, Cd, Pb, Cr, Ba, Ni, and As, from the specialty-steel slag-based rubber composites is much lower than the limit value of the hazardous-waste identification standards. Therefore, specialty-steel slag is safe and feasible for use as a rubber functional filler.
-
Key words:
- specialty-steel slag /
- functional filler /
- compounded rubber /
- safety /
- carbon black
-
表 1 特殊鋼鋼渣的基本性能
Table 1. Basic properties of specialty-steel slag
Safety Stability Pore structure Internal exposure index External exposure index f-CaO mass fraction/% Boiling expansion/mm Specific surface area/
(m2·g?1)Pore volume/
(mL·g?1)Average pore size/
nm0.44 0.53 0.91 0.72 6.111 0.0432 20.81 表 2 特殊鋼鋼渣基復合橡膠的主要性能指標
Table 2. Main performance parameters of specialty-steel slag-based rubber composites
NO. Content of carbon black/g Content of specialty-steel slag/g Mechanical properties Flame retardant properties Heat conductivity
coefficient/
(W·m?1·K?1)Tensile strength/
MPaTear strength/
(kN·m?1)Elongation at break/% Shore A hardness Limiting oxygen index/% Burnout time/
s1# 50 0 22.8 50.7 458 66.7 18.5 241 0.20 2# 40 10 21.5 48.6 475 65.3 18.5 264 0.17 3# 30 20 20.0 45.2 501 63.5 18.6 292 0.15 4# 20 30 15.9 39.5 533 59.4 18.6 305 0.19 5# 10 40 9.5 31.3 556 54.2 18.7 316 0.24 6# 30 0 16.2 38.9 527 57.7 18.5 226 0.18 表 3 特殊鋼鋼渣的化學成分(質量分數)
Table 3. Chemical composition of specialty-steel slag
% CaO SiO2 Al2O3 MgO Fe2O3 Cr2O3 PbO P2O5 CuO MnO Other 52.35 23.68 8.31 7.56 1.96 1.12 0.83 0.41 0.37 0.32 3.09 表 4 特殊鋼鋼渣基復合橡膠的重金屬浸出毒性
Table 4. Leaching toxicities of heavy metals from specialty-steel slag-based rubber composites
Heavy metal Limiting value/
(mg·L?1)Test values/(mg·L?1) 1# 2# 3# 4# 5# 6# Cu 100 0 0.005 0.007 0.014 0.024 0 Zn 100 0.003 0.006 0.009 0.016 0.028 0.001 Cd 1 0 0.001 0.002 0.004 0.005 0 Pb 5 0 0.003 0.005 0.009 0.016 0 Cr 15 0 0.001 0.002 0.006 0.006 0 Ba 100 0 0.023 0.035 0.084 0.113 0 Ni 5 0 0.004 0.009 0.017 0.031 0 As 5 0 0.001 0.002 0.006 0.006 0 259luxu-164 -
參考文獻
[1] Liu T C. The Highly Effective Technology to Active Steel Slag and Its Application in Green Construct Materials [Dissertation]. Changsha: Central South University, 2008劉天成. 鋼渣高效活化及在綠色建材中的應用[學位論文]. 長沙: 中南大學, 2008 [2] Zhang Z H, Liao J L, Ju J T, et al. Treatment process and utilization technology of steel slag in China and Abroad. J Iron Steel Res, 2013, 25(7): 1張朝暉, 廖杰龍, 巨建濤, 等. 鋼渣處理工藝與國內外鋼渣利用技術. 鋼鐵研究學報, 2013, 25(7):1 [3] Murri A N, Rickard W D A, Bignozzi M C, et al. High temperature behaviour of ambient cured alkali-activated materials based on ladle slag. Cem Concr Res, 2013, 43: 51 doi: 10.1016/j.cemconres.2012.09.011 [4] Maertens C, Dubois P, Jerome R, et al. Synthesis and polarized light-induced birefringence of new polymethacrylates containing carbazolyl and azobenzene pendant groups. J Polym Sci Part B Polym Phys, 2000, 38(1): 205 doi: 10.1002/(SICI)1099-0488(20000101)38:1<205::AID-POLB23>3.0.CO;2-H [5] Mykhaylyk O O, Warren N J, Parnell A J, et al. Applications of shear-induced polarized light imaging (SIPLI) technique for mechano-optical rheology of polymers and soft matter materials. J Polym Sci Part B Polym Phys, 2016, 54(21): 2151 doi: 10.1002/polb.24111 [6] Li Z F, Luo M Y, Jiang Y X, et al. Preparation and application of organo montmorillonite synthesizing exfoliated natural rubber composites. Polym Mater Sci Eng, 2017, 33(3): 1李再峰, 羅明艷, 蔣玉湘, 等. 用以合成高剝離型天然橡膠復合材料有機蒙脫土的制備及應用. 高分子材料科學與工程, 2017, 33(3):1 [7] Liu X B, Gao Y, Bian L N, et al. Influence of ultrafine full-vulcanized styrene-butadiene powdered rubber on dynamic mechanical properties of natural rubber/butadiene rubber and styrene- butadiene rubber/butadiene rubber blends. Polym Bull, 2015, 72(8): 2001 doi: 10.1007/s00289-015-1385-5 [8] Dmowska-Jasek P, Rzymski W M, Koscista E, et al. A new method of styrene-butadiene rubber curing using in situ generated Lewis acids. Polimery, 2015, 61(11-12): 742 [9] Liu X B, Gao Y, Bian L N, et al. Preparation and characterization of natural rubber/ultrafine full-vulcanized powdered styrene-butadiene rubber blends. Polym Bull, 2014, 71(8): 2023 doi: 10.1007/s00289-014-1169-3 [10] Yu P, He H, Jiang C, et al. Reinforcing styrene butadiene rubber with lignin-novolac epoxy resin networks. Express Polym Lett, 2015, 9(1): 36 doi: 10.3144/expresspolymlett.2015.5 [11] Custodio J, Broughton J, Cruz H. A review of factors influencing the durability of structural bonded timber joints. Int J Adhes Adhes, 2009, 29(2): 173 doi: 10.1016/j.ijadhadh.2008.03.002 [12] Ashori A, Nourbakhsh A, Karegarfard A. Properties of medium density fiberboard based on bagasse fibers. J Compos Mater, 2009, 43(18): 1927 doi: 10.1177/0021998309341099 [13] He F, Li W P, You J H, et al. Effect of liquid natural rubber on interfacial interactions of SiO2/NR composites prepared by wet mixing method. Acta Mater Compos Sin, 2018, 35(1): 185何凡, 李文朋, 游建華, 等. 液體天然橡膠對濕法混煉制備白炭黑/天然橡膠復合材料界面相互作用的影響. 復合材料學報, 2018, 35(1):185 [14] Wang N, Yu F, Wang S, et al. Caged pentaerythritol phosphate-expandable graphite synergistic flame retardant natural rubber. Acta Mater Compos Sin, 2018, 35(11): 2966王娜, 于芳, 王升, 等. 籠狀季戊四醇磷酸酯-可膨脹石墨協同阻燃天然橡膠. 復合材料學報, 2018, 35(11):2966 [15] Zhang H, Zhang X Y. Preparation of modified porous steel slag/rubber composite materials and its properties. Chin J Eng, 2019, 41(1): 88張浩, 張欣雨. 改性多孔鋼渣/橡膠復合材料的制備及其性能. 工程科學學報, 2019, 41(1):88 [16] Zhang H, Huang X J, Zong Z F, et al. Optimization of preparation program for biomass based porous active carbon by response surface methodology based on adsorptive property. J Mater Eng, 2017, 45(6): 67 doi: 10.11868/j.issn.1001-4381.2016.000979張浩, 黃新杰, 宗志芳, 等. 基于吸附性能的生物質基多孔活性炭制備方案的響應面法優化. 材料工程, 2017, 45(6):67 doi: 10.11868/j.issn.1001-4381.2016.000979 [17] Shang J L, Zhang H, Xiong L, et al. Optimized preparation of decanoic-palmitic acid/SiO2 composite phase change materials based on uniform design. J Mater Eng, 2015, 43(9): 94 doi: 10.11868/j.issn.1001-4381.2015.09.015尚建麗, 張浩, 熊磊, 等. 基于均勻設計優化制備癸酸-棕櫚酸/SiO2復合相變材料. 材料工程, 2015, 43(9):94 doi: 10.11868/j.issn.1001-4381.2015.09.015 [18] Chen H, Li H. Action mechanism of special steel tailing powder in preparation for foam concrete. J Build Mater, 2019, 22(3): 446 doi: 10.3969/j.issn.1007-9629.2019.03.017陳華, 李輝. 特殊鋼尾渣粉在泡沫混凝土制備中的作用機理. 建筑材料學報, 2019, 22(3):446 doi: 10.3969/j.issn.1007-9629.2019.03.017 [19] Chen H, Li H, Dong S, et al. X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis of steel slags in different treatment process and active index prediction model. Spectrosc Spect Anal, 2017, 37(8): 2590陳華, 李輝, 董朔, 等. 不同處理工藝鋼渣的X射線衍射和X射線熒光光譜分析及其活性指數預測模型. 光譜學與光譜分析, 2017, 37(8):2590 [20] Xu S, Wu W H, Cheng L Y, et al. Preparation of cattail activated carbon supported Fe2O3 and its flame retardant application in flexible polyvinyl chloride. Acta Mater Compos Sin, 2018, 35(7): 1745許碩, 武偉紅, 程路瑤, 等. 蒲絨活性炭負載Fe2O3的制備及其在軟質聚氯乙烯中的阻燃應用. 復合材料學報, 2018, 35(7):1745 -