Microstructure and properties of Cu–Al-laminated composites fabricated via formation of a horizontal continuous casting composite
-
摘要: 提出了一種可以制備冶金結合界面雙金屬復合板帶的水平連鑄復合成形新工藝,其具有短流程、高效的特點。采用該工藝制備了截面尺寸為70 mm×24 mm(寬度×厚度)的銅鋁復合板,獲得了可行的制備參數,研究了所制備板坯的組織形貌和性能。結果表明,銅鋁復合板制備成形過程中,會形成由金屬間化合物和共晶相組成的復合界面層。鋁液和銅板表面接觸,發生固液轉變形成(II)層:θ相。隨著銅原子不斷的向鋁液中擴散,當銅原子含量達到一定程度,θ相發生固相轉變形成(I)層:γ相。達到共晶溫度時,發生共晶轉變形成(III)層:α+θ共晶組織。其中I層和II層均為銅鋁金屬間化合物,是裂紋產生和擴展的主要區域,因此界面層厚度是決定結合強度的重要因素。通過調整工藝參數可以優化凝固過程中銅鋁復合板內的溫度場分布,進而控制復合界面層的形成過程,因此工藝參數之間的合理匹配是改善復合層組織結構和增大板坯結合強度的關鍵。Abstract: With the advantages of both Cu and Al, including high conductivity, good corrosion resistance, low density, and easy connectivity, Cu–Al-laminated composites become a substitute for copper plates which can be applied widely in the fields of telecommunication, the petrochemical industry, transportation, decorative buildings, and the aerospace, national defense, and military industries. Cu–Al-laminated composites can be prepared via various methods, such as the explosive combined method, rolling combined method, and cast-rolling combined method. However, all these methods are limited because of the complicated metal surface treatment which poses a restriction on the development of this kind of plate. To resolve this issue, a new process of horizontal continuous casting composite forming (HCCF) for bimetal composite plates with an interface of metallurgical bonding, which is regarded as a short and more efficient process, was presented in this paper. Cu–Al composite plates with a section size of 70 mm × 24 mm (width × thickness) were fabricated, whose feasible preparation parameters were further studied, along with the investigation of the microstructure and properties of the composite plate. The results show that consisting of intermetallic compounds and eutectic phase, an interfacial layer is formed during the preparation and formation of the Cu–Al composite plate. Layer II of θ is formed via a solid–liquid transition during the solidification of liquid Al on the solid Cu plate. With the Cu atoms continuously diffusing into the Al liquid, layer I of γ is formed via a solid–solid transition with a certain content of Cu atoms, while layer III of α + θ is formed via eutectic transformation under the eutectic temperature. Making of Cu–Al intermetallic compounds, Layer I and layer II are the main areas of crack generation and expansion, thus, the thickness of the interface layer plays an important role that can control bonding strength. The temperature distribution of the composite Cu–Al plate during solidification is optimized by adjusting the parameters and controlling the formation of the composite layer. Therefore, a reasonable matching of the process parameters is the key to improving the microstructure of the composite layer and increasing the bond strength of the clad plate.
-
圖 4 銅鋁復合板復合界面的顯微結果和元素分布. (a) 界面組織結構;(b) 圖(a)中框圖放大圖;(c) AB能譜線掃描分析結構;(d) CD能譜線掃描分析結果
Figure 4. Microstructure and elemental distribution at the composite interface of the Cu–Al composite plate: (a) microstructure of the interface; (b) magnifying of rectangular diagram in (a); (c) EDS line scan analysis results of AB; (d) EDS line scan analysis results of CD
圖 5 銅鋁復合板坯拉剪斷裂面的 X 射線衍射圖譜. (a) 1#試樣銅側斷面;(b) 1#試樣鋁側斷面;(c) 2#試樣銅側斷面;(d) 2#試樣鋁側斷面
Figure 5. X-ray diffraction spectrum of tension–shear fracture of the surface of the Cu–Al composite plate: (a) fracture surface of 1# sample copper side; (b) fracture surface of 1# sample aluminum side; (c) fracture surface of 2# sample copper side; (d) fracture surface of 2# sample aluminum side
圖 13 工藝參數對θ相和γ相形成和生長的影響. (a) V=40 mm·min?1,Q=1000 L·h?1;(b) V=60 mm·min?1,Q=1000 L·h?1;(c) V=80 mm·min?1,Q=1000 L·h?1;(d) V=100 mm·min?1,Q=1000 L·h?1;(e) V=60 mm·min?1,Q=800 L·h?1
Figure 13. Effects of the technological parameters on the formation and growth of the θ and γ phases: (a) V=40 mm·min?1, Q=1000 L·h?1; (b) V=60 mm·min?1, Q=1000 L·h?1; (c) V=80 mm·min?1, Q=1000 L·h?1; (d) V=100 mm·min?1, Q=1000 L·h?1; (e) V=60 mm·min?1, Q=800 L·h?1
編號 Cu原子數分數/% Al原子數分數/% 相種類 編號 Cu原子數分數/% Al原子數分數/% 相種類 1 74.38 25.62 γ 5 14.41 85.59 α + θ 2 31.60 68.40 θ 6 16.85 83.15 α + θ 3 34.03 65.97 θ 7 19.40 80.60 α + θ 4 20.37 79.63 α + θ 8 16.33 83.67 α + θ 編號 Cu原子數分數/% Al原子數分數/% 銅鋁原子比 1 61.98 38.02 9∶4 2 31.27 68.73 1∶2 3 67.01 32.99 9∶4 4 33.32 66.68 1∶2 259luxu-164 -
參考文獻
[1] Liu T, Liu P, Wang Q D. Research progress on copper/aluminum bimetal composite. Mater Rev, 2013, 27(10): 1 doi: 10.3969/j.issn.1005-023X.2013.10.001劉騰, 劉平, 王渠東. 銅鋁雙金屬復合材料的研究進展. 材料導報, 2013, 27(10):1 doi: 10.3969/j.issn.1005-023X.2013.10.001 [2] Tian H W, Wang A Q, Liu S Y, et al. Research progress on copper?aluminum laminated composites. J Mater Sci Eng, 2019, 37(1): 167田捍衛, 王愛琴, 劉帥洋, 等. 銅鋁層狀復合材料的研究進展. 材料科學與工程學報, 2019, 37(1):167 [3] Liu S Y, Wang A Q, Lü S J, et al. Interfacial properties and further processing of Cu/Al laminated composite: A review. Mater Rev, 2018, 32(3): 828劉帥洋, 王愛琴, 呂世敬, 等. 銅鋁層狀復合材料界面特性及深加工研究進展. 材料導報, 2018, 32(3):828 [4] Wu L, Wu Z P, Meng C L, et al. Study on application of a new type of copper?aluminum transition fittings for low voltage wiring. Guangdong Sci Technol, 2014, 1(2): 53 doi: 10.3969/j.issn.1006-5423.2014.02.028吳霖, 吳鐘平, 孟春旅, 等. 一種新型低壓接戶線銅鋁過渡金具的應用研究. 廣東科技, 2014, 1(2):53 doi: 10.3969/j.issn.1006-5423.2014.02.028 [5] Athar M M H, Tolaminejad B. Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding. Mater Des, 2015, 86: 516 doi: 10.1016/j.matdes.2015.07.114 [6] Chen F Y, Chen G, Xiong S F. Explosive welding-rolling composite plate of copper?aluminum and its application. Light Alloy Fabrication Technol, 1996, 24(11): 37陳勇富, 陳崗, 熊少非. 銅?鋁爆炸焊接?軋制復合板及其應用. 輕合金加工技術, 1996, 24(11):37 [7] Chen M, Wan X Y, Dong T Y, et al. Performance analysis on interlayer of high purity aluminum and copper bonded by explosive welding. Nonferrous Met (Extr Metall) , 2014(5): 56陳明, 萬小勇, 董亭義, 等. 高純鋁與銅爆炸焊接性能分析. 有色金屬(冶煉部分), 2014(5):56 [8] Wang T, Li S, Ren Z K, et al. A novel approach for preparing Cu/Al laminated composite based on corrugated roll. Meter Lett, 2019, 234: 79 doi: 10.1016/j.matlet.2018.09.060 [9] Li L, Nagai K, Yin F X. Progress in cold roll bonding of metals. Sci Technol Adv Mater, 2008, 9(2): 23001 doi: 10.1088/1468-6996/9/2/023001 [10] Li X B, Zu G Y, Wang P. Microstructural development and its effects on mechanical properties of Al/Cu laminated composite. Trans Nonferrous Met Soc China, 2015, 25(1): 36 doi: 10.1016/S1003-6326(15)63576-2 [11] Jiang Y, Peng D S, Lu D, et al. Analysis of clad sheet bonding by cold rolling. J Mater Process Technol, 2000, 105(1-2): 32 doi: 10.1016/S0924-0136(00)00553-7 [12] Hu J. The study to produce copper fold aluminium composite wire by hydraulic extrusion. New Technol New Process, 2001(9): 27 doi: 10.3969/j.issn.1003-5311.2001.09.014胡捷. 銅包鋁復合線材靜液擠壓加工工藝研究. 新技術新工藝, 2001(9):27 doi: 10.3969/j.issn.1003-5311.2001.09.014 [13] Lou M X, Liu X H, Jiang Y B, et al. Rotary swaging-drawing formation, microstructure, and properties of copper-clad aluminium composite micro-wires. Chin J Eng, 2018, 40(11): 1358婁敏軒, 劉新華, 姜雁斌, 等. 銅包鋁絲材的旋鍛復合-拉拔成形與組織性能. 工程科學學報, 2018, 40(11):1358 [14] Liu S Y, Wang A Q, Tian H W, et al. The synergetic tensile deformation behaviour of Cu/Al laminated composites prepared by twin-roll casting technology. Mater Res Express, 2018, 6(1): 016530 doi: 10.1088/2053-1591/aae630 [15] Lu W K, Xie J P, Wang A Q, et al. Effects of annealing temperature on interfacial microstructure and mechanical properties of Cu/Al roll-casted composite plate. Mater Mech Eng, 2014, 38(3): 14路王珂, 謝敬佩, 王愛琴, 等. 退火溫度對銅鋁鑄軋復合板界面組織和力學性能的影響. 機械工程材料, 2014, 38(3):14 [16] Xie J X. Advanced Processing Technologies of Materials. Beijing: Metallurgical Industry Press, 2004謝建新. 新材料加工新技術與新工藝. 北京: 冶金工業出版社, 2004 [17] Wu Y F, Liu X H, Xie J X, et al. Copper cladding aluminum composite materials with rectangle section fabricated by horizontal core-filling continuous casting. Chin J Nonferrous Met, 2012, 22(9): 2500吳永福, 劉新華, 謝建新, 等. 矩形斷面銅包鋁復合材料的水平連鑄直接復合成形. 中國有色金屬學報, 2012, 22(9):2500 [18] Su Y J, Liu X H, Huang H Y, et al. Effects of processing parameters on the fabrication of copper cladding aluminum rods by horizontal core-filling continuous casting. Metall Mater Trans B, 2011, 42(1): 104 doi: 10.1007/s11663-010-9449-2 [19] Chen S Y, Chang G W, Yue X D, et al. Solidification process and microstructure of transition layer of Cu?Al composite cast prepared by method of pouring molten aluminum. Trans Nonferrous Met Soc China, 2016, 26(8): 2247 doi: 10.1016/S1003-6326(16)64343-1 [20] Wu Y F, Liu X H, Xie J X. Interface of copper cladding aluminum composite materials with rectangle section fabricated by horizontal core-filling continuous casting and its evolvement in rolling process. Chin J Nonferrous Met, 2013, 23(1): 191吳永福, 劉新華, 謝建新. 連鑄直接成形矩形斷面銅包鋁復合材料界面及其在軋制中的變化. 中國有色金屬學報, 2013, 23(1):191 [21] Su Y J, Liu X H, Huang H Y, et al. Interfacial microstructure and bonding strength of copper cladding aluminum rods fabricated by horizontal core-filling continuous casting. Metall Mater Trans A, 2011, 42(13): 4088 doi: 10.1007/s11661-011-0785-x [22] Tavassoli S, Abbasi M, Tahavvori R. Controlling of IMCs layer formation sequence, bond strength and electrical resistance in Al?Cu bimetal compound casting process. Mater Des, 2016, 108: 343 doi: 10.1016/j.matdes.2016.06.076 -